NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2019
Examining resting-state functional connectivity in first-episode schizophrenia with 7T fMRI and MEG.
Schizophrenia is often characterized by dysconnections in the brain, which can be estimated via functional connectivity analyses. Commonly measured using resting-state functional magnetic resonance imaging (fMRI) in order to characterize the intrinsic or baseline function of the brain, fMRI functional connectivity has significantly contributed to the understanding of schizophrenia. However, these measures may not capture the full extent of functional connectivity abnormalities in schizophrenia as fMRI is temporally limited by the hemodynamic response. ⋯ In fMRI, patients demonstrated hyperconnectivity between subcortical and auditory networks, as well as hypoconnectivity between interhemispheric homotopic sensorimotor network components. In MEG, patients demonstrated hypoconnectivity between sensorimotor and task positive networks in the delta frequency band. Results not only support the dysconnectivity hypothesis of schizophrenia, but also suggest the importance of jointly examining multimodal neuroimaging data as critical disorder-related information may not be detectable in a single modality alone.
-
NeuroImage. Clinical · Jan 2019
White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study.
Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative disorders with both sporadic and genetic forms. Mutations in the progranulin gene (GRN) are a common cause of genetic FTD, causing either a behavioural presentation or, less commonly, language impairment. Presence on T2-weighted images of white matter hyperintensities (WMH) has been previously shown to be more commonly associated with GRN mutations rather than other forms of FTD. ⋯ They are associated with increased GM atrophy and executive dysfunction. Furthermore, their presence is associated with markers of WM damage (NfL) and astrocytosis (GFAP), whilst their accrual is modified by TMEM106B genetic status. WMH load may represent a target marker for trials of disease modifying therapies in individual patients but the variability across the GRN population would prevent use of such markers as a global outcome measure across all participants in a trial.
-
NeuroImage. Clinical · Jan 2019
Differential medial temporal lobe and default-mode network functional connectivity and morphometric changes in Alzheimer's disease.
We report group level differential detection of medial temporal lobe resting-state functional connectivity disruption and morphometric changes in the transition from cognitively normal to early mild cognitive impairment in an age-, education- and gender-matched 105 subjects Alzheimer's Disease Neuroimaging Initiative dataset. In mild Alzheimer's Disease, but not early mild cognitive impairment, characteristic brain atrophy was detected in FreeSurfer estimates of subcortical and hippocampal subfield volumes and cortical thinning. ⋯ Key findings include: a) focal, bilaterally symmetric spatial organization of affected medial temporal lobe regions; b) mutual hyperconnectivity involving ventral medial temporal lobe structures (temporal pole, uncus); c) dorsal medial temporal lobe hypoconnectivity with anterior and posterior midline default-mode network nodes; and d) a complex pattern of transient and persistent changes in hypo- and hyper-connectivity across Alzheimer's Disease stages. These findings position medial temporal lobe resting state functional connectivity as a candidate biomarker of an Alzheimer's Disease pathophysiological cascade, potentially in advance of clinical biomarkers, and coincident with biomarkers of the earliest stages of Alzheimer's neuropathology.
-
NeuroImage. Clinical · Jan 2019
White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm.
The underlying microstructural properties of white matter differences in children born very preterm (<32 weeks gestational age) can be investigated in depth using multi-shell diffusion imaging. The present study compared white matter across the whole brain using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) metrics in children born very preterm and full-term children at six years of age. We also investigated associations between white matter microstructure with early brain injury and developmental outcomes. ⋯ Children born very preterm exhibit lower FA and higher ODI than full-term children. NODDI metrics provide more biologically specific information beyond DTI metrics as well as additional information of the impact of prematurity and white matter microstructure on cognitive outcomes at six years of age.
-
NeuroImage. Clinical · Jan 2019
Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and 18F-FDG-PET imaging.
Disease-modifying treatment trials are increasingly advanced to the prodromal or preclinical phase of Alzheimer's disease (AD), and inclusion criteria are based on biomarkers rather than clinical symptoms. Therefore, it is of great interest to determine which biomarkers should be combined to accurately predict conversion from mild cognitive impairment (MCI) to AD dementia. However, up to date, only few studies performed a complete A/T/N subject characterization using each of the CSF and imaging markers, or they only investigated long-term (≥ 2 years) prognosis. ⋯ Patients with MCI converted to AD dementia at an annual rate of 31%, which could be best predicted by combining neuropsychological testing (visuospatial construction skills) with either MRI-based HV or 18F-FDG-PET. Combining all three markers resulted in 96% specificity and 92% sensitivity. Neither amyloid-PET nor CSF biomarkers could discriminate short-term converters from non-converters.