The Journal of comparative neurology
-
This study investigated the role of prostaglandins (PGs) on the neuronal activity and the transcription of corticotropin-releasing factor (CRF) in the brain of conscious immune-challenged rats. Intravenous (i.v.) administration of indomethacin, an inhibitor of PG synthesis, was performed prior to and after the intraperitoneal (i.p.) injection of different doses [250 microg, 25 microg, and 2.5 microg/100 g body weight (b.w.)] of the immune activator lipopolysaccharide (LPS). Systemic administration of the high and middle doses of LPS caused a robust and widespread induction of both immediate-early genes (IEGs), c-fos and nerve growth factor-inducible gene B (NGFI-B) mRNAs, whereas injection of the low dose selectively triggered c-fos expression within the sensorial circumventricular organs. ⋯ In the hypothalamic PVN, inhibition of both c-fos and NGFI-B transcripts by indomethacin was also associated to an abolished influence of the endotoxin on the transcription of neuroendocrine CRF; induction of CRF primary transcript by the middle dose of LPS was selective to the PVN and was completely blocked by pretreatment with indomethacin. Moreover, a large number of tyrosine hydroxylase (TH)-immunoreactive neurons of the VLM (A1/C1) and the NTS (A2/C2) were positive for c-fos mRNA in immune-challenged rats, an effect that was largely prevented by indomethacin in the VLM but not in the NTS. These results indicate that the role of PGs in mediating the stimulatory influence of the acute-phase response depends on the severity of the systemic stressful situation, the brain regions, and the cell groups as well as the activated target genes.
-
An in vitro autoradiographic technique has recently been developed to visualize receptor-activated G-proteins by using agonist-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding in the presence of excess guanosine 5'-diphosphate. This technique was used to localize opioid-activated G-proteins in guinea pig brain, a species that contains the three major types of opioid receptors. This study used selective mu, delta, and kappa opioid agonists as well as nociceptin or orphanin FQ (N/OFQ) peptide, an endogenous ligand for an orphan opioid receptor-like (ORL1) receptor, to stimulate [35S]GTPgammaS binding in guinea pig brain sections. ⋯ Mu-stimulated [35S]GTPgammaS binding predominated in the hypothalamus, amygdala, and brainstem, whereas kappa-stimulated [35S]GTPgammaS binding was particularly high in the substantia nigra and cortex and was moderate in the cerebellum. N/OFQ-stimulated [35S] GTPgammaS binding was highest in the cortex, hippocampus, and hypothalamus and exhibited a unique anatomical distribution compared with opioid-stimulated [35S]GTPgammaS binding. The present study extends previous reports on opioid and ORL1 receptor localization by anatomically demonstrating functional activity produced by mu, delta, and kappa opioid and ORL1 receptor activation of G-proteins.