The Journal of comparative neurology
-
Axonal connections of the medial magnocellular nucleus of the anterior neostriatum in zebra finches.
The medial magnocellular nucleus of the anterior neostriatum (mMAN) is a small cortical nucleus which was previously identified as a component of the neural circuitry controlling vocal behavior in songbirds based on its efferent connection to the High Vocal Center (HVC), a major song control nucleus (Nottebohm et al. [1982] J. Comp. Neurol. 207:344-357; Bottjer et al. [1989] J. ⋯ The other source of afferent input to DMP is located in the external cellular stratum of the lateral hypothalamus (SCE). This newly delineated SCE-->DMP-->mMAN-->HVC/pHVC pathway is the first report of a hypothalamic brain region neuroanatomically integrated with song control circuitry. Because hypothalamic brain regions are important for homeostasis and regulating behavior, the trans-synaptic circuitry of mMAN may help to integrate information about the bird's internal state, such as sexual maturation, with song learning and production.
-
Comparative Study
Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury.
To examine the possible role of interastrocytic gap junctions in the maintenance of tissue homeostasis after spinal cord damage, we initiated studies of the astrocytic gap junctional protein connexin43 (Cx43) in relation to temporal and spatial parameters of neuronal loss, reactive gliosis, and white matter survival in a rat model of traumatic spinal cord injury (SCI). Cx43 immunolocalization in normal and compression-injured spinal cord was compared by using two different sequence-specific anti-Cx43 antibodies that have previously exhibited different immunorecognition properties at lesion sites in brain. At 1- and 3-day survival times, gray matter areas with mild to moderate neuronal depletion exhibited a loss of immunolabeling with one of the two antibodies. ⋯ By 7 days post-SCI, Cx43 again co-localized with GFAP-positive cells in the surviving subpial rim, and with astrocytic processes on radially oriented vascular profiles investing the central borders of the lesion. The results indicate that alterations in Cx43 cellular localization and Cx43 molecular modifications reflected by epitope masking, which were previously correlated with gap junction remodeling following excitotoxin-induced lesions in brain, are not responses limited to exogenously applied excitotoxins; they also occur in damaged spinal cord and are evoked by endogenous mechanisms after traumatic SCI. The GFAP/Cx43 co-localization results suggest that during their transformation to a reactive state, spinal cord astrocytes undergo a transitional phase marked by altered Cx43 localization or expression.