The Journal of comparative neurology
-
Distinctive subsets of glutamatergic neurons in cerebral cortex sequester the transition metal zinc within the synaptic vesicles of their axon terminals. In the present study we used histochemical localization of synaptic zinc to investigate normal postnatal development and experience-dependent plasticity of zinc-containing circuits in somatosensory barrel cortex of rats. First, we found that zinc-containing cortical circuits are dynamically reorganized between postnatal day (P) 0 and P28. ⋯ This resulted in more intense zinc staining in deprived barrels compared with adjacent, nondeprived barrels. Notably, the influence of experience on development of zinc circuits was most robust during a critical period extending from about P14, when an effect of whisker trimming first could be observed, through P28, after which time chronic deprivation no longer resulted in heightened levels of synaptic zinc in lamina IV. These findings indicate that sensory input can have a marked influence on development of cortical circuits, including those within lamina IV, throughout the first postnatal month.
-
N-methyl-D-aspartate (NMDA) receptors in sensory afferents participate in chronic pain by mediating peripheral and central sensitization. We studied the presence of NMDA receptor subunits in different types of primary afferents. Western blots indicated that rat dorsal root ganglia (DRG) contain NR1, NR2B, NR2C, and NR2D but not NR2A. ⋯ The intracellular distribution of the NR2 subunits was strikingly different: Whereas NR2A/NR2B immunoreactivity was found in the Golgi apparatus and occasionally at the plasma membrane, NR2C/NR2D immunoreactivity was found in the cytoplasm but not in the Golgi. The NR1 subunit was present throughout the cytoplasm and was more intense in the Golgi. These findings indicate that DRG neurons have two different NMDA receptors, one containing the NR1, NR2D, and possibly the NR2C subunits, found only in C-fibers, and the diheteromer NR1/NR2B, present in the Golgi apparatus of both A- and C-fibers.