The Journal of comparative neurology
-
Comparative Study
VGluT2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex.
A vesicular glutamate transporter, VGluT2, has been suggested to be the transporter utilized in the thalamocortical pathway. We examined the reliability of this marker in identifying and discriminating thalamic terminals in adult and developing ferret visual cortex. We studied brain sections stained for the transporter protein and/or anterogradely filled thalamocortical or intracortical axons, by using light, confocal, and electron microscopy. ⋯ Moreover, no significant differences were found between VGluT2-ir and anterogradely labeled thalamocortical terminals. Comparable similarities were also demonstrated at P46. These results indicate that thalamocortical terminals in layer 4 of visual cortex utilize VGluT2 and suggest that this marker can be used to identify thalamic axons specifically in adult and developing animals.
-
Unmyelinated nerve fibers (Remak bundles) in the rodent sciatic nerve typically contain multiple axons. This study asked whether C-fiber bundles contain axons arising from more than one type of neuron. Most small neurons of the lumbar dorsal root ganglion (DRG) are either glial cell line-derived neurotrophic factor dependent or nerve growth factor dependent, binding either isolectin B4 (IB4) or antibodies to calcitonin gene-related peptide (CGRP), respectively. ⋯ Concomitantly, 97% of the Remak bundles with more than one axon contained at least one IB4-labeled axon. Probabilistic modeling using binomial distribution functions rejected the hypothesis that IB4 axons segregate into IB4-specific bundles (P < 0.00001). We conclude that most Remak bundle Schwann cells simultaneously support diverse axon types with different growth factor dependences.
-
Comparative Study
Differential regulation of GABA(A) receptor and gephyrin postsynaptic clustering in immature hippocampal neuronal cultures.
Gephyrin is a postsynaptic scaffolding protein involved in clustering of glycine- and GABA(A) receptors at inhibitory synapses. The role of gephyrin in GABAergic synapses, the nature of its interactions with GABA(A) receptors, and the mechanisms of targeting to GABAergic synapses are largely unknown. To gain further insights into these questions, the formation of GABA(A) receptor and gephyrin clusters and their distribution relative to presynaptic terminals were investigated in immature cultures of embryonic hippocampal neurons using triple immunofluorescence staining. ⋯ Labeling for vesicular glutamate transporters revealed that most synapses in these immature cultures were presumably glutamatergic, implying that postsynaptic GABA(A) receptor and gephyrin clusters initially were located in "mismatched" synapses. However, clusters appropriately localized in GABAergic synapses were distinctly larger and more intensely stained. Altogether, these results demonstrate that the targeting of GABA(A) receptor and gephyrin clusters to GABAergic synapses occurs secondarily and is regulated by presynaptic factors that are not essential for clustering.