The Journal of comparative neurology
-
Comparative Study
Expression of ghrelin receptor mRNA in the rat and the mouse brain.
Ghrelin is a hormone that stimulates growth hormone secretion and signals energy insufficiency via interaction with its receptor, the growth hormone secretagogue receptor (GHSR). The GHSR is located in both the central nervous system and the periphery. Its distribution in the CNS, as assessed by in situ hybridization histochemistry (ISHH), has been described previously in a few mammalian species, although these studies were limited by either the detail provided or the extent of the regions examined. ⋯ GHSR also was found in several other regions previously unknown to express GHSR mRNA, including many parasympathetic preganglionic neurons. Additionally, we found GHSR mRNA within all three components of the dorsal vagal complex, including the area postrema, the nucleus of the solitary tract, and the dorsal motor nucleus of the vagus. Finally, we examined the coexpression of GHSR with tyrosine hydroxylase and cholecystokinin and demonstrate a high degree of GHSR mRNA expression within dopaminergic, cholecystokinin-containing neurons of the substantia nigra and ventral tegmental area.
-
Visceral pain is a prevalent clinical problem and one of the most common ailments for which patients seek medical attention. Recent studies have described many of the physiological properties of visceral afferents, but not much is known regarding their anatomical characteristics. To determine the spinal distribution and neurochemical phenotype of colonic afferents in rodents, Alexa Fluor-conjugated cholera toxin-beta (CTB) was injected subserosally into the proximal and distal portions of the descending colon in Sprague Dawley rats and C57Bl/6 mice. ⋯ The vast majority of CTB-positive neurons in both mouse and rat were positive for TRPV1 and CGRP and most likely unmyelinated, in that most colonic afferents were not positive for neurofilament heavy chain. In the mouse, the TL ganglia had a significantly higher percentage of TRPV1- and CGRP-positive neurons than did the LS ganglia, whereas no differences were observed in the rat. The high incidence of TRPV1-positive colonic afferents in rodents suggests that hypersensitivity from the viscera may be partially a TRPV1-mediated event, thereby providing a suitable target for the treatment of visceral pain.