The Journal of comparative neurology
-
Inhibitory and excitatory synaptic inputs onto trigeminal motoneurons play an important role in coordinating jaw movements. Previously, we reported that the phenotype of the inhibitory boutons apposing the somata of jaw-closing (JC) motoneurons changes from γ-aminobutyric acid (GABA)-positive (GABA+) to predominantly glycine-positive (Gly+) during development. In the present study, we investigated the development of inhibitory and excitatory boutons apposing antagonistic jaw-opening (JO) motoneurons (anterior digastric motoneurons) at postnatal day 2 (P2), P11, and P31 in the rat. ⋯ The fraction of GABA+ boutons decreased by 86% and the fraction of GABA+/Gly+ boutons increased by 200% from P11 to P31, suggesting a switch from GABA+ to GABA+/Gly+ phenotype. The fraction of Gly+ boutons remained unchanged. These results indicate that inhibitory synapses onto somata of JO motoneurons exhibit a developmental pattern distinct from that of synapses onto JC motoneurons, which may reflect distinctive maturation of oral motor system.
-
Comparative Study
Pre-Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons.
The retrotrapezoid nucleus (RTN) contains CO(2) -responsive neurons that regulate breathing frequency and amplitude. These neurons (RTN-Phox2b neurons) contain the transcription factor Phox2b, vesicular glutamate transporter 2 (VGLUT2) mRNA, and a subset contains preprogalanin mRNA. We wished to determine whether the terminals of RTN-Phox2b neurons contain galanin and VGLUT2 proteins, to identify the specific projections of the galaninergic subset, to test whether RTN-Phox2b neurons contact neurons in the pre-Bötzinger complex, and to identify the ultrastructure of these synapses. ⋯ Their boutons (n = 48) formed asymmetric synapses filled with small clear vesicles. In summary, RTN-Phox2b neurons, including the galaninergic subset, selectively innervate the respiratory pattern generator plus a portion of the dorsolateral pons. RTN-Phox2b neurons establish classic excitatory glutamatergic synapses with pre-Bötzinger complex neurons presumed to generate the respiratory rhythm.