The Journal of comparative neurology
-
In the rabbit retina there are two types of horizontal cell (HC). A-type HCs (AHC) are axonless and extensively coupled via connexin (Cx)50 gap junctions. The B-type HC (BHC) is axon-bearing; the somatic dendrites form a second network coupled by gap junctions while the axon terminals (ATs) form a third independent network in the outer plexiform layer (OPL). ⋯ We conclude that in the rabbit retina, Cx57 is only found on BHC-AT processes. Thus, in species where there are two types of HC, different connexins are expressed. The absence of Cx57 labeling in the somatic dendrites of B-type HCs suggests the possibility of an additional unidentified HC connexin in the rabbit.
-
Cortical and subcortical inputs to the striatum are functionally highly organized and they obey to some extent striatal patch-matrix topography. Whether this organization is reflected in the density of various glutamatergic endings is unknown. We therefore mapped boutons expressing the vesicular glutamate transporters VGluT1 and VGluT2, together with boutons immunoreactive for vesicular γ-aminobutyric acid (GABA) transporter (VGAT) in patch and matrix throughout the striatum. ⋯ In contrast, VGluT2 showed a global increase in density from lateral to medial and a relatively high density in the ventral striatum. VGAT appeared more evenly distributed in the striatal patch-matrix than the VGluTs, with a tendency of bouton density to increase from medial to lateral. We noted a good correlation between the high VGluT1 bouton density dorsomedially with inputs from dorsal medial prefrontal cortex and related thalamic regions, and the enhanced VGluT2 input ventromedially with input from ventral medial prefrontal cortex and thalamic, amygdaloid, and hippocampal sources.