The Journal of comparative neurology
-
There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity-purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On western blots these antibodies recognize a single band at 〜24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit, and monkey retina. ⋯ RBPMS immunoreactivity is localized to cyan fluorescent protein (CFP)-fluorescent RGCs in the B6. Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs.
-
Detailed characterization of neural circuitries furthers our understanding of how nervous systems perform specific functions and allows the use of those systems to test hypotheses. We have characterized the sensory input to the cutaneous trunk muscle (CTM; also cutaneus trunci [rat] or cutaneus maximus [mouse]) reflex (CTMR), which manifests as a puckering of the dorsal thoracolumbar skin and is selectively driven by noxious stimuli. CTM electromyography and neurogram recordings in naïve rats revealed that CTMR responses were elicited by natural stimuli and electrical stimulation of all segments from C4 to L6, a much greater extent of segmental drive to the CTMR than previously described. ⋯ These observations highlight aspects of the organization of the CTMR system that make it attractive for studies of nociception and anesthesiology and plasticity of primary afferents, motoneurons, and the propriospinal system. We use the CTMR system to demonstrate qualitatively and quantitatively that experimental pharmacological treatments can be compared with controls applied either to the contralateral side or to another segment, with the remaining segments providing controls for systemic or other treatment effects. These data indicate the potential for using the CTMR system as both an invasive and a noninvasive quantitative assessment tool providing improved statistical power and reduced animal use.