The Journal of comparative neurology
-
Ts65Dn, a mouse model of Down syndrome (DS), demonstrates abnormal hippocampal synaptic plasticity and behavioral abnormalities related to spatial learning and memory. The molecular mechanisms leading to these impairments have not been identified. In this study, we focused on the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) gene that is highly expressed in the hippocampus region. ⋯ However, in the Ts65Dn mouse a strong immunofluorescent staining of GIRK2 was detected in the lacunosum molecular layer of the CA3 area of the hippocampus. In addition, tyrosine hydroxylase containing dopaminergic neurons that coexpress GIRK2 were more numerous in the substantia nigra compacta and ventral tegmental area in the Ts65Dn compared to diploid controls. In summary, the regional localization and the increased brain levels coupled with known function of the GIRK channel may suggest an important contribution of GIRK2 containing channels to Ts65Dn and thus to DS neurophysiological phenotypes.
-
Comparative Study
Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons.
The generation of emotional responses by the basolateral amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons, the pyramidal cells. The activity of these neurons is tightly controlled by gamma-aminobutyric acid (GABA)-ergic interneurons, especially a parvalbumin-positive (PV(+)) subpopulation that constitutes almost half of all interneurons in the basolateral amygdala. In the present semiquantitative investigation, we studied the incidence of synaptic inputs of PV(+) axon terminals onto pyramidal neurons in the rat basolateral nucleus (BLa). ⋯ PV(+) axon terminals form mainly symmetrical synapses. These PV(+) synapses constitute slightly more than half of the symmetrical synapses formed with each postsynaptic compartment of BLa pyramidal cells. These data indicate that the synaptology of basolateral amygdalar pyramidal cells is remarkably similar to that of cortical pyramidal cells and that PV(+) interneurons provide a robust inhibition of both the perisomatic and the distal dendritic domains of these principal neurons.
-
Comparative Study
Expression of ghrelin receptor mRNA in the rat and the mouse brain.
Ghrelin is a hormone that stimulates growth hormone secretion and signals energy insufficiency via interaction with its receptor, the growth hormone secretagogue receptor (GHSR). The GHSR is located in both the central nervous system and the periphery. Its distribution in the CNS, as assessed by in situ hybridization histochemistry (ISHH), has been described previously in a few mammalian species, although these studies were limited by either the detail provided or the extent of the regions examined. ⋯ GHSR also was found in several other regions previously unknown to express GHSR mRNA, including many parasympathetic preganglionic neurons. Additionally, we found GHSR mRNA within all three components of the dorsal vagal complex, including the area postrema, the nucleus of the solitary tract, and the dorsal motor nucleus of the vagus. Finally, we examined the coexpression of GHSR with tyrosine hydroxylase and cholecystokinin and demonstrate a high degree of GHSR mRNA expression within dopaminergic, cholecystokinin-containing neurons of the substantia nigra and ventral tegmental area.
-
Visceral pain is a prevalent clinical problem and one of the most common ailments for which patients seek medical attention. Recent studies have described many of the physiological properties of visceral afferents, but not much is known regarding their anatomical characteristics. To determine the spinal distribution and neurochemical phenotype of colonic afferents in rodents, Alexa Fluor-conjugated cholera toxin-beta (CTB) was injected subserosally into the proximal and distal portions of the descending colon in Sprague Dawley rats and C57Bl/6 mice. ⋯ The vast majority of CTB-positive neurons in both mouse and rat were positive for TRPV1 and CGRP and most likely unmyelinated, in that most colonic afferents were not positive for neurofilament heavy chain. In the mouse, the TL ganglia had a significantly higher percentage of TRPV1- and CGRP-positive neurons than did the LS ganglia, whereas no differences were observed in the rat. The high incidence of TRPV1-positive colonic afferents in rodents suggests that hypersensitivity from the viscera may be partially a TRPV1-mediated event, thereby providing a suitable target for the treatment of visceral pain.
-
Comparative Study
Trigeminal transition zone/rostral ventromedial medulla connections and facilitation of orofacial hyperalgesia after masseter inflammation in rats.
Recent studies have implicated a role for the trigeminal interpolaris/caudalis (Vi/Vc) transition zone in response to orofacial injury. Using combined neuronal tracing and Fos protein immunocytochemistry, we investigated functional connections between the Vi/Vc transition zone and rostral ventromedial medulla (RVM), a key structure in descending pain modulation. Rats were injected with a retrograde tracer, FluoroGold, into the RVM 7 days before injection of an inflammatory agent, complete Freund's adjuvant, into the masseter muscle and perfused at 2 hours postinflammation. ⋯ Compared with control rats, lesions of the RVM (n=6) or Vi/Vc (n=6) with ibotenic acid led to the elimination or attenuation of masseter hyperalgesia/allodynia developed after masseter inflammation (P<0.05-0.01). The present study demonstrates reciprocal connections between the ventral Vi/Vc transition zone and RVM. The Vi/Vc-RVM pathway is activated after orofacial deep tissue injury and plays a critical role in facilitating orofacial hyperalgesia.