The American journal of physiology
-
Primary dysmenorrhea is characterized by painful uterine cramps, near and during menstruation, that have an impact on personal life and productivity. The effect on sleep of this recurring pain has not been established. We compared sleep, nocturnal body temperatures, and hormone profiles during the menstrual cycle of 10 young women who suffered from primary dysmenorrhea, without any menstrual-associated mood disturbances, and 8 women who had normal menstrual cycles. ⋯ Both groups of women had less REM sleep when their body temperatures were high during the luteal and menstrual phases, implying that REM sleep is sensitive to elevated body temperatures. We have shown that dysmenorrhea is not only a disorder of menstruation but is manifest throughout the menstrual cycle. Furthermore, dysmenorrheic pain disturbs sleep, which may exacerbate the effect of the pain on daytime functioning.
-
Cardiac hypothermia alters contractility and intracellular Ca2+ concentration ([Ca2+]i) homeostasis. We examined how left ventricular pressure (LVP) is altered as a function of cytosolic [Ca2+]i over a range of extracellular CaCl2 concentration ([CaCl2]e) during perfusion of isolated, paced guinea pig hearts at 37 degrees C, 27 degrees C, and 17 degrees C. Transmural LV phasic [Ca2+] was measured using the Ca2+ indicator indo 1 and calibrated (in nM) after correction was made for autofluorescence, temperature, and noncytosolic Ca2+. ⋯ The relationship of diastolic and noncytosolic [Ca2+] to [CaCl2]e was shifted upward at 17 degrees C and 27 degrees C, whereas that of phasic [Ca2+]) to [CaCl2]e was shifted upward at 17 degrees C but not at 27 degrees C. The relationships of phasic [Ca2+]i to developed LVP, +dLVP/dt, and LVP(area) were progressively reduced by hypothermia so that maximal Ca2+-activated LVP decreased and hearts were desensitized to Ca2+. Thus mild hypothermia modestly increases diastolic and noncytosolic Ca2+ with little effect on systolic Ca2+ or released (area) Ca2+, whereas moderate hypothermia markedly increases diastolic, noncytosolic, peak systolic, and released Ca2+ and results in reduced maximal Ca2+-activated LVP and myocardial sensitivity to systolic Ca2+.
-
Although a lower transfusion trigger is generally recommended, little evidence is available about the physiological mechanisms of mild anemia in diseases with an imbalance between O2 supply and O2 demand such as sepsis. This study was undertaken to describe the systemic and coronary metabolic O2 reserve in an awake sheep model of hyperdynamic sepsis comparing two different hemoglobin levels. Twenty-four hours after sheep were rendered septic by cecal ligation and perforation (CLP), blood transfusion (n = 7, hemoglobin = 120 g/l) and isovolemic hemodilution (n = 8, hemoglobin = 70 g/l), respectively, were performed. ⋯ In the hemodilution group, coronary blood flow increased more per increase in myocardial O(2) uptake than in transfused sheep (P < 0.01). This was accompanied by a lower left ventricular epicardial-to-endocardial flow ratio in hemodiluted sheep (1.13 +/- 0.07) than in transfused sheep (1.34 +/- 0.02, P < 0.05). We conclude that the lower coronary blood flow and greater myocardial O2 extraction in transfused septic sheep preserves transmyocardial O2 metabolism better in comparison to hemodiluted sheep.
-
Knowledge of hemodynamic principles is crucial to an understanding of cardiovascular physiology. This topic can be effectively taught by discussing simple physical principles and basic algebraic equations. ⋯ Moreover, opportunities abound for showing how each hemodynamic principle can explain one or another functional feature of the cardiovascular system or a cardiovascular pathophysiological state. Thus hemodynamics can be used as an organizational thread to tie together other aspects of cardiovascular physiology.
-
To clarify whether exposure to 6 degrees head-down tilt (HDT) leads to alterations in body fluid volumes and responses to a saline load similar to those observed during space flight we investigated eight healthy subjects during a 4-day, 6 degrees HDT and during a time-control ambulatory period with cross-over. Compared with the ambulatory period, HDT was associated with greater urinary excretion of water and sodium (UV, U(Na)V) from 0 to 12 h (cumulated UV 1,781 +/- 154 vs. 1,383 +/- 170 ml, P < 0.05; cumulated U(Na)V 156 +/- 14 vs. 117 +/- 9 mmol, P < 0.05), and with higher plasma atrial natriuretic factor (ANF) at 4 h. Hemoglobin and hematocrit increased over the first 24 h, and blood and plasma volumes were decreased after 48 h of HDT (P < 0.05). ⋯ Sodium excreted within 4 h of loading was 123 +/- 8 mmol during HDT vs. 168 +/- 16 mmol during the ambulatory period (P < 0.05). The increase in plasma ANF and decrease in PRA were greater during HDT than during the ambulatory period (ANF 30 +/- 5 vs. 13 +/- 4 pg/ml, P < 0.05; PRA -1.4 +/- 0.4 vs. -0.5 +/- 0.2 ng. ml(-1). h(-1), P < 0.05). Our data suggest that after a 3-day HDT period, thoracic volume receptor loading returns to the level seen in the upright position, leading to blunted responses to volume expansion, compared with acute supine control.