Brain research. Molecular brain research
-
Brain Res. Mol. Brain Res. · Oct 1999
Mutation of human mu opioid receptor extracellular "disulfide cysteine" residues alters ligand binding but does not prevent receptor targeting to the cell plasma membrane.
The mu opioid receptor, a primary site of action in the brain for opioid neuropeptides and opiate drugs of abuse, is a member of the seven transmembrane, G protein-coupled receptor (GPCR) superfamily. Two cysteine residues, one in each of the first two of three extracellular loops (ECLs), are highly conserved among GPCRs, and there is direct or circumstantial evidence that the residues form a disulfide bond in many of these receptors. Such a bond would dramatically govern the topology of the ECLs, and possibly affect the position of the membrane-spanning domains. ⋯ The two point mutants possessing serine-for-cysteine substitutions were also observed to successfully reach the cell plasma membrane, as evidenced by electron microscopy. Consistent with related work with other GPCRs, the mu opioid receptor apparently also employs the extracellular disulfide bond. This information now permits accurate molecular modeling of extracellular aspects of the receptor, including plausible scenarios of mu receptor docking of opioid ligands known to require specific extracellular loop features for high affinity binding.