Nucleic acids research
-
The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. ⋯ Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host-pathogen interactions.
-
Nucleic acids research · Jan 2017
HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks.
The increasing number of experimentally detected interactions between proteins makes it difficult for researchers to extract the interactions relevant for specific biological processes or diseases. This makes it necessary to accompany the large-scale detection of protein-protein interactions (PPIs) with strategies and tools to generate meaningful PPI subnetworks. To this end, we generated the Human Integrated Protein-Protein Interaction rEference or HIPPIE (http://cbdm.uni-mainz.de/hippie/). ⋯ We integrated different types of experimental information for the confidence scoring and the construction of context-specific networks. We implemented basic graph algorithms that highlight important proteins and interactions. HIPPIE's graphical interface implements several ways for wet lab and computational scientists alike to access the PPI data.