Nucleic acids research
-
Nucleic acids research · Dec 2014
Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling.
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) binds to the promoter region of mu-opioid receptor (MOR) to regulate its transcriptional activity. How hnRNP K contributes to the analgesic effects of morphine, however, is largely unknown. We provide evidence that morphine increases hnRNP K protein expression via MOR activation in rat primary cortical neurons and HEK-293 cells expressing MORs, without increasing mRNA levels. ⋯ Finally, we found that down-regulation of hnRNP K mediated by siRNA attenuated morphine-induced hyperpolarization of membrane potential in AtT20 cells. Silencing hnRNP K expression in the spinal cord increased nociceptive sensitivity in wild-type mice, but not in MOR-knockout mice. Thus, our findings identify the role of translational control of hnRNP K in morphine-induced analgesia through activation of MOR.
-
Nucleic acids research · Sep 2014
SpliceNet: recovering splicing isoform-specific differential gene networks from RNA-Seq data of normal and diseased samples.
Conventionally, overall gene expressions from microarrays are used to infer gene networks, but it is challenging to account splicing isoforms. High-throughput RNA Sequencing has made splice variant profiling practical. However, its true merit in quantifying splicing isoforms and isoform-specific exon expressions is not well explored in inferring gene networks. ⋯ Gene level evaluations demonstrate a substantial performance of SpliceNet over canonical correlation analysis, a method that is currently applied to exon level RNA-Seq data. SpliceNet can also be applied to exon array data. SpliceNet is distributed as an R package available at http://www.jjwanglab.org/SpliceNet.
-
Nucleic acids research · Jul 2014
NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration.
Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required--identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. ⋯ The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca.
-
Nucleic acids research · Jan 2014
Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding.
Soybean Knowledge Base (http://soykb.org) is a comprehensive web resource developed for bridging soybean translational genomics and molecular breeding research. It provides information for six entities including genes/proteins, microRNAs/sRNAs, metabolites, single nucleotide polymorphisms, plant introduction lines and traits. ⋯ Soybean Knowledge Base has a new suite of tools such as In Silico Breeding Program for soybean breeding, which includes a graphical chromosome visualizer for ease of navigation. It integrates quantitative trait loci, traits and germplasm information along with genomic variation data, such as single nucleotide polymorphisms, insertions, deletions and genome-wide association studies data, from multiple soybean cultivars and Glycine soja.
-
The UniCarb KnowledgeBase (UniCarbKB; http://unicarbkb.org) offers public access to a growing, curated database of information on the glycan structures of glycoproteins. UniCarbKB is an international effort that aims to further our understanding of structures, pathways and networks involved in glycosylation and glyco-mediated processes by integrating structural, experimental and functional glycoscience information. This initiative builds upon the success of the glycan structure database GlycoSuiteDB, together with the informatic standards introduced by EUROCarbDB, to provide a high-quality and updated resource to support glycomics and glycoproteomics research. ⋯ Among these are 35 glycoproteins, 502 structures and 60 publications previously not included in GlycoSuiteDB. This article provides an update on the transformation of GlycoSuiteDB (featured in previous NAR Database issues and hosted by ExPASy since 2009) to UniCarbKB and its integration with UniProtKB and GlycoMod. Here, we introduce a refactored database, supported by substantial new curated data collections and intuitive user-interfaces that improve database searching.