Cell
-
Acute lung injury (ALI) is a leading cause of death in people infected with H5N1 avian influenza virus or the SARS-coronavirus. Imai et al. (2008) now report that ALI is triggered by the signaling of oxidized phospholipids through Toll-like receptor 4 (TLR4) and the adaptor protein TRIF. These findings provide insight into the molecular pathogenesis of ALI, a condition for which treatment options are currently very limited.
-
Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. ⋯ Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.