Curēus
-
Acute renal failure remains a significant concern in all patients with the coronavirus disease 2019 (COVID-19) infection. Management is particularly challenging in critically ill patients requiring intensive care unit (ICU) level of care. ⋯ Renal replacement therapy is used for a long time in critically ill septic patients who develop progressive renal failure despite adequate conservative support. Timing and choice of renal replacement therapy in critically ill COVID-19 patients remains an area of future research that may help decrease mortality in this patient population.
-
The novel coronaviruses causing severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19) have been shown to utilize angiotensin-converting enzyme 2 (ACE2) as the receptor for entry into the host cells. The involvement of the renin-angiotensin system (RAS) in the evolution and pathogenesis of lung diseases has been implicated in recent years. The two enzymes of RAS, angiotensin-converting enzyme (ACE) and ACE2, serve a contrasting function. ⋯ Animal studies have shown that ACE2 and AT2 receptors counter the pro-inflammatory and other effects mediated by angiotensin II by their vasodilator, anti-inflammatory, anti-fibrotic, and anti-proliferative effects. They have been shown to protect against and revert acute lung injuries. The instrumental role of recombinant ACE2, AT2 receptor agonists, and AT1 receptor blockers may be helpful in the treatment of COVID-19.
-
Infection caused by novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) has been associated with coagulopathy. We present a case of a previously healthy 49-year-old female who was admitted to the hospital for coronavirus disease 2019 (COVID-19) pneumonia and later found to have extensive deep vein thrombosis (DVT) in all four extremities. ⋯ This is one of the first case reports describing APLA-associated DVT in a patient with COVID-19 pneumonia. Transient elevation of APLA from the viral illness may play a role in thrombosis associated with COVID-19.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging human coronavirus responsible for coronavirus disease 2019 (COVID-19), a predominantly respiratory disease that has become a global pandemic. Millions of people worldwide are suffering from COVID-19, and hundreds of thousands of those infected have died. ⋯ To assess preventive and therapeutic strategies, it is imperative to understand the pathogenesis and immune response against SARS-CoV-2. In this review, we concentrate on the protective adaptive immune response elicited by this novel coronavirus as well as requirements for a successful vaccine inducing optimal protection.
-
Introduction Urinary catheter insertion is a mandatory procedure taught during medical school. It is imperative that learners are provided the opportunity to practice the procedure, as an improper catheterization technique can result in urethral trauma and contribute to urinary tract infections. Simulation training offers the advantage of avoiding patient harm while allowing learners to feel comfortable to learn from their mistakes, resulting in increased user confidenceand shortening the learning curve for basic procedures. 3D-printed simulation models are anatomically accurate, low-cost, reusable, and effective for teaching basic procedural skills. This study aims to assess the self-rated effectiveness of the 3D model in increasing student confidence and preparedness. ⋯ Overall, the reported value as a training tool resulted in an average score of 4.62±0.58 (where 1 is "not at all relevant" and 5 is "very relevant"). Conclusions Preclerkship undergraduate medical students found the 3D-printed male catheter insertion model to be a useful learning tool with accurate anatomical representations and technical qualities. The 3D-printed model can be beneficial for increasing learner confidence and preparedness when completing a catheter insertion, allowing for the opportunity to practice on a low-cost, accessible simulator.