BMC pulmonary medicine
-
BMC pulmonary medicine · Feb 2017
Case ReportsElderly-onset hereditary pulmonary alveolar proteinosis and its cytokine profile.
Pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by surfactant accumulation, and is caused by disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. Abnormalities in CSF2 receptor alpha (CSF2RA) were reported to cause pediatric hereditary PAP. We report here the first case of CSF2RA-mutated, elderly-onset hereditary (h) PAP. ⋯ This is the first known report of elderly-onset hPAP associated with a CSF2RA mutation, which caused defective GM-CSF-Rα expression and impaired signaling. The analyses of serum cytokine levels during WLL suggested that GM-CSF signaling might be compensated by other signaling pathways, leading to elderly-onset PAP.
-
BMC pulmonary medicine · Feb 2017
Review Case ReportsExtracorporeal membrane oxygenation for avian influenza A (H7N9) patient with acute respiratory distress syndrome: a case report and short literature review.
Extracorporeal membrane oxygenation (ECMO) is performed as an acceptable life-saving bridging procedure in patients with severe acute respiratory distress syndrome (ARDS).To patients with avian influenza A (H7N9)-associated ARDS, ECMO could be adopted as a feasible therapeutic solution. We present our successful experience with ECMO utilized in a respiratory failure patient with H7N9 infection. ⋯ ECMO was effective in this H7N9 patient with a fatal respiratory failure. Mechanical circulatory support was the only chance for our patient with H7N9-associated ARDS to survive until respiratory function recovery. Early detection and rapid response are essential to these serious ECMO-associated complications such as hemorrhage, thrombosis and infection.
-
BMC pulmonary medicine · Feb 2017
Hemodynamic effects of lung recruitment maneuvers in acute respiratory distress syndrome.
Clinical trials have, so far, failed to establish clear beneficial outcomes of recruitment maneuvers (RMs) on patient mortality in acute respiratory distress syndrome (ARDS), and the effects of RMs on the cardiovascular system remain poorly understood. ⋯ Our results support the hypothesis that patients with severe ARDS and significant numbers of alveolar units available for recruitment may benefit more from RMs. Our results also indicate that a higher than normal initial cardiac output may provide protection against the potentially negative effects of high intrathoracic pressures associated with RMs on cardiac function. Results from in silico patients with mild or moderate ARDS suggest that the detrimental effects of RMs on cardiac output can potentially outweigh the positive effects of alveolar recruitment on oxygenation, resulting in overall reductions in tissue oxygen delivery.
-
BMC pulmonary medicine · Feb 2017
Early exposure to hyperoxia and mortality in critically ill patients with severe traumatic injuries.
Hyperoxia is common early in the course of resuscitation of critically ill patients. It has been associated with mortality in some, but not all, studies of cardiac arrest patients and other critically ill cohorts. Reasons for the inconsistency are unclear and may depend on unmeasured patient confounders, the timing and duration of hyperoxia, population characteristics, or the way that hyperoxia is defined and measured. We sought to determine whether, in a prospectively collected cohort of mechanically ventilated patients with traumatic injuries with and without head trauma, higher maximum partial pressure of arterial oxygen (PaO2) within 24 hours of admission would be associated with increased risk of in-hospital mortality. ⋯ In mechanically ventilated patients with severe traumatic injuries, hyperoxia in the first 24 hours of admission was not associated with increased risk of death or worsened neurological outcomes in a setting without brain tissue oxygenation monitoring.