Frontiers in immunology
-
Frontiers in immunology · Jan 2021
ReviewImmune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment.
Colorectal cancer (CRC) is one of the most common cancers worldwide. As with other cancers, CRC is a multifactorial disease due to the combined effect of genetic and environmental factors. Most cases are sporadic, but a small proportion is hereditary, estimated at around 5-10%. ⋯ Some bacteria, such as pks+ Escherichia coli or Fusobacterium nucleatum, are involved in colorectal carcinogenesis through different pathomechanisms including the induction of genetic mutations in epithelial cells and modulation of tumor microenvironment. Epithelial and immune cells from intestinal mucosa have Pattern-recognition receptors and G-protein coupled receptors (receptor of butyrate), suggesting that their activation can be regulated by intestinal microbiota and metabolites. In this review, we discuss how dynamics in the gut microbiota, their metabolites, and tumor microenvironment interplays in sporadic and hereditary CRC, modulating tumor progression.
-
Frontiers in immunology · Jan 2021
Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies.
COVID-19 (SARS-CoV-2) disease severity and stages varies from asymptomatic, mild flu-like symptoms, moderate, severe, critical, and chronic disease. COVID-19 disease progression include lymphopenia, elevated proinflammatory cytokines and chemokines, accumulation of macrophages and neutrophils in lungs, immune dysregulation, cytokine storms, acute respiratory distress syndrome (ARDS), etc. Development of vaccines to severe acute respiratory syndrome (SARS), Middle East Respiratory Syndrome coronavirus (MERS-CoV), and other coronavirus has been difficult to create due to vaccine induced enhanced disease responses in animal models. ⋯ SARS-CoV-2 antibodies bound to Fc receptors on macrophages and mast cells may represent two different mechanisms for ADE in patients. These two different ADE risks have possible implications for SARS-CoV-2 B-cell vaccines for subsets of populations based on age, cross-reactive antibodies, variabilities in antibody levels over time, and pregnancy. These models place increased emphasis on the importance of developing safe SARS-CoV-2 T cell vaccines that are not dependent upon antibodies.
-
Frontiers in immunology · Jan 2021
Comprehensive Comparison of RNA-Seq Data of SARS-CoV-2, SARS-CoV and MERS-CoV Infections: Alternative Entry Routes and Innate Immune Responses.
The pathogenesis of COVID-19 emerges as complex, with multiple factors leading to injury of different organs. Some of the studies on aspects of SARS-CoV-2 cell entry and innate immunity have produced seemingly contradictory claims. In this situation, a comprehensive comparative analysis of a large number of related datasets from several studies could bring more clarity, which is imperative for therapy development. ⋯ First, our analyses support the existence of cell entry mechanisms for SARS and SARS-CoV-2 other than the ACE2 route with evidence of inefficient infection of cells without expression of ACE2; expression of TMPRSS2/TPMRSS4 is unnecessary for efficient SARS-CoV-2 infection with evidence of efficient infection of A549 cells transduced with a vector expressing human ACE2. Second, we find that innate immune responses in terms of interferons and interferon simulated genes are strong in relevant cells, for example Calu3 cells, but vary markedly with cell type, virus dose, and virus type.
-
Frontiers in immunology · Jan 2021
The Antigenicity of Epidemic SARS-CoV-2 Variants in the United Kingdom.
To determine whether the neutralization activity of monoclonal antibodies, convalescent sera and vaccine-elicited sera was affected by the top five epidemic SARS-CoV-2 variants in the UK, including D614G+L18F+A222V, D614G+A222V, D614G+S477N, VOC-202012/01(B.1.1.7) and D614G+69-70del+N439K, a pseudovirus-neutralization assay was performed to evaluate the relative neutralization titers against the five SARS-CoV-2 variants and 12 single deconvolution mutants based on the variants. In this study, 18 monoclonal antibodies, 10 sera from convalescent COVID-19 patients, 10 inactivated-virus vaccine-elicited sera, 14 mRNA vaccine-elicited sera, nine RBD-immunized mouse sera, four RBD-immunized horse sera, and four spike-encoding DNA-immunized guinea pig sera were tested and analyzed. ⋯ However, the convalescent sera, inactivated virus vaccine-elicited sera, mRNA vaccine-elicited sera, spike DNA-elicited sera, and recombinant RBD protein-elicited sera could still neutralize these variants (within three-fold changes compared to the reference D614G variant). The neutralizing antibody responses to different types of vaccines were different, whereby the response to inactivated-virus vaccine was similar to the convalescent sera.