Frontiers in immunology
-
Frontiers in immunology · Jan 2020
ReviewMolecular Targets for Biological Therapies of Severe Asthma.
Asthma is a heterogeneous respiratory disease characterized by usually reversible bronchial obstruction, which is clinically expressed by different phenotypes driven by complex pathobiological mechanisms (endotypes). Within this context, during the last years several molecular effectors and signalling pathways have emerged as suitable targets for biological therapies of severe asthma, refractory to standard treatments. Indeed, various therapeutic antibodies currently allow to intercept at different levels the chain of pathogenic events leading to type 2 (T2) airway inflammation. ⋯ Therefore, ongoing and future biological therapies are significantly changing the global scenario of severe asthma management. These new therapeutic options make it possible to implement phenotype/endotype-specific treatments, that are delineating personalized approaches precisely addressing the individual traits of asthma pathobiology. Such tailored strategies are thus allowing to successfully target the immune-inflammatory responses underlying uncontrolled T2-high asthma.
-
Frontiers in immunology · Jan 2020
ReviewStrategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status.
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. ⋯ Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
-
Frontiers in immunology · Jan 2020
ReviewGlioblastoma Immune Landscape and the Potential of New Immunotherapies.
Glioblastoma (GBM) are the most common tumors of the central nervous system and among the deadliest cancers in adults. GBM overall survival has not improved over the last decade despite optimization of therapeutic standard-of-care. ⋯ We describe the role of microglia and tumor-associated macrophages (TAMs) in immune suppression and highlight the impact of energy metabolism in immune evasion. We also describe the challenges and opportunities of immunotherapies in GBM and discuss new avenues based on harnessing the anti-tumor activity of myeloid cells, vaccines, chimeric antigen receptors (CAR)-T and -NK cells, oncolytic viruses, nanocarriers, and combination therapies.
-
Frontiers in immunology · Jan 2020
Multicenter StudyThe Human Leukocyte Antigen-DPB1 Degree of Compatibility Is Determined by Its Expression Level and Mismatch Permissiveness: A German Multicenter Analysis.
T-cell epitope matching according to the TCE3 algorithm classifies HLA-DPB1 mismatches in permissive and non-permissive. This classification has been shown to be predictive for mortality and acute GvHD (aGvHD) events in large international cohorts. We retrospectively genotyped HLA-DPB1 in 3523 patients transplanted in Germany between 2000 and 2014 and in their unrelated donors using an Illumina amplicon-NGS based assay. ⋯ Effects on GvL and GvHD appeared strongest in GvH-directed non-permissive mismatches. Our study results support the consideration of additional HLA-DPB1 mismatch parameters along with the established TCE3 matching algorithm for refinement of future donor selection. In particular, our findings suggest that DP non-permissiveness associated with two HLA-DPB1 mismatches or at least on highly expressed mismatched patient allotype should be avoided.
-
Frontiers in immunology · Jan 2020
ReviewTargeting GM-CSF in COVID-19 Pneumonia: Rationale and Strategies.
COVID-19 is a clinical syndrome ranging from mild symptoms to severe pneumonia that often leads to respiratory failure, need for mechanical ventilation, and death. Most of the lung damage is driven by a surge in inflammatory cytokines [interleukin-6, interferon-γ, and granulocyte-monocyte stimulating factor (GM-CSF)]. Blunting this hyperinflammation with immunomodulation may lead to clinical improvement. ⋯ Prospective, randomized, placebo-controlled trials are ongoing. Anti-GM-CSF monoclonal antibodies, TJ003234 and gimsilumab, will be tested in clinical trials in patients with COVID-19, while lenzilumab received FDA approval for compassionate use. These trials will help inform whether blunting the inflammatory signaling provided by the GM-CSF axis in COVID-19 is beneficial.