Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Feb 2001
Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer.
The fate of breast cancer patients is dependent upon elimination or control of metastases. We studied the effect of antibody-targeted liposomes containing entrapped doxorubicin (DXR) on development of tumours in two models of breast cancer, pseudometastatic and metastatic, in mice. The former used the mouse mammary carcinoma cell line GZHI, which expresses the human MUC-1 gene (L. ⋯ Surgical removal of the primary tumour from mfp, followed by various chemotherapy regimens, was attempted, but removal of the primary tumour was generally incomplete; tumour regrowth occurred and metastases developed in the lungs in all treatment groups. DXR-SL reduced the occurrence of regrowth of the primary tumour, whereas neither targeted liposomal drug or free drug prevented regrowth. We conclude that monoclonal antibody-targeted liposomal DXR is effective in treating early lesions in both the pseudometastatic and metastatic models, but limitations to the access of the targeted liposomes to tumour cells in the primary tumour compromised their therapeutic efficacy in treating the more advanced lesions.
-
Biochim. Biophys. Acta · Feb 2001
Growth arrest in A549 cells during hyperoxic stress is associated with decreased cyclin B1 and increased p21(Waf1/Cip1/Sdi1) levels.
Exposure to high concentrations of oxygen has previously been shown to cause growth arrest in A549 cells, a distal lung epithelial cell line. We found that when A549 cells were exposed to 95% oxygen they underwent substantial growth inhibition. This was associated with induction of p21(Waf1/Cip1/Sdi1) protein and a decrease in cyclin B1 protein. ⋯ Both wild-type p21(+/+) cells and null p21(-/-) cells underwent growth inhibition when exposed to hyperoxia. At 48 h the hyperoxic treated HCT116 p21(+/+) had a similar cell cycle distribution as the hyperoxic treated HCT116 p21(-/-) cells, suggesting that p21(Waf1/Cip1/Sdi1) may not be essential for growth arrest during hyperoxia. These findings suggest that hyperoxia causes partial growth arrest at different phases of the cell cycle but primarily in S phase, that hyperoxic growth arrest is associated with a decrease in cyclin B1 protein and that p21 induction may not be essential for hyperoxic growth arrest.