Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Oct 2005
Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice.
Sphingolipids play a very important role in cell membrane formation, signal transduction, and plasma lipoprotein metabolism, and all these functions may have an impact on atherosclerotic development. Serine palmitoyl-CoA transferase (SPT) is the key enzyme in sphingolipid biosynthesis. To evaluate in vivo SPT activity and its role in sphingolipid metabolism, we applied homologous recombination to embryonic stem cells, producing mice with long chain base 1 (Sptlc1) and long chain base 2 (Sptlc2), two subunits of SPT, gene deficiency. ⋯ Analysis showed that, compared with WT mice, Sptlc1(+/-) and Sptlc2(+/-) mice had: (1) decreased liver Sptlc1 and Sptlc2 mRNA by 44% and 57% (P<0.01 and P<0.0001, respectively); (2) decreased liver Sptlc1 mass by 50% and Sptlc2 mass by 70% (P<0.01 and P<0.01, respectively), moreover, Sptlc1 mass decreased by 70% in Sptlc2(+/-) mouse liver, while Sptlc2 mass decreased by 53% in Sptlc1(+/-) mouse liver (P<0.001 and P<0.01, respectively); (3) decreased liver SPT activity by 45% and 60% (P<0.01, respectively); (4) decreased liver ceramide (22% and 39%, P<0.05 and P<0.01, respectively) and sphingosine levels (22% and 31%, P<0.05 and P<0.01, respectively); (5) decreased plasma ceramide (45% and 39%, P<0.01, respectively), sphingosine-1-phosphate (31% and 32%, P<0.01, respectively) and sphingosine levels (22.5% and 25%, P<0.01, respectively); (6) dramatically decreased plasma lysosphingomyelin (17-fold and 16-fold, P<0.0001, respectively); and (7) no change of plasma sphingomyelin, triglyceride, total cholesterol, phospholipids, and liver sphingomyelin levels. These results indicated that both Sptlc1 and Sptlc2 interactions are necessary for SPT activity in vivo, and that SPT activity directly influences plasma sphingolipid levels. Furthermore, manipulation of SPT activity might well influence the course of such diseases as atherosclerosis.
-
Biochim. Biophys. Acta · Oct 2005
Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages.
Bioactive N-acylethanolamines including the endocannabinoid anandamide are known to be hydrolyzed to fatty acids and ethanolamine by fatty acid amide hydrolase (FAAH). In addition, we recently cloned an isozyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)", which is active only at acidic pH [Tsuboi, Sun, Okamoto, Araki, Tonai, Ueda, J. Biol. ⋯ Pretreatment of the cells with CCP or URB597 partially inhibited the degradation, and a combination of the two compounds caused more profound inhibition. In contrast, the anandamide hydrolysis in mouse brain appeared to be principally attributable to FAAH despite the expression of NAAA in the brain. These results suggested that NAAA and FAAH cooperatively degraded various N-acylethanolamines in macrophages.