Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Jan 2010
ReviewMitochondria, oxidative metabolism and cell death in stroke.
Stroke most commonly results from occlusion of a major artery in the brain and typically leads to the death of all cells within the affected tissue. Mitochondria are centrally involved in the development of this tissue injury due to modifications of their major role in supplying ATP and to changes in their properties that can contribute to the development of apoptotic and necrotic cell death. In animal models of stroke, the limited availability of glucose and oxygen directly impairs oxidative metabolism in severely ischemic regions of the affected tissue and leads to rapid changes in ATP and other energy-related metabolites. ⋯ A secondary deterioration of mitochondrial function subsequently develops that may contribute to progression to cell loss. Mitochondrial release of multiple apoptogenic proteins has been identified in ischemic and post-ischemic brain, mostly in neurons. Pharmacological interventions and genetic modifications in rodent models strongly implicate caspase-dependent and caspase-independent apoptosis and the mitochondrial permeability transition as important contributors to tissue damage, particularly when induced by short periods of temporary focal ischemia.
-
Biochim. Biophys. Acta · Jan 2010
Energetic performance is improved by specific activation of K+ fluxes through K(Ca) channels in heart mitochondria.
Mitochondrial volume regulation depends on K+ movement across the inner membrane and a mitochondrial Ca2+-dependent K+ channel (mitoK(Ca)) reportedly contributes to mitochondrial K+ uniporter activity. Here we utilize a novel K(Ca) channel activator, NS11021, to examine the role of mitoK(Ca) in regulating mitochondrial function by measuring K+ flux, membrane potential (DeltaPsi(m)), light scattering, and respiration in guinea pig heart mitochondria. K+ uptake and the influence of anions were assessed in mitochondria loaded with the K+ sensor PBFI by adding either the chloride (KCl), acetate (KAc), or phosphate (KH2PO4) salts of K+ to energized mitochondria in a sucrose-based medium. ⋯ Fifty nanomolar of NS11021 increased the mitochondrial respiratory control ratio (RCR) in KH2PO4, but not in KCl; however, above 1 microM, NS11021 decreased RCR and depolarized DeltaPsi(m). A control compound lacking K(Ca) activator properties did not increase K+ uptake or volume but had similar nonspecific (toxin-insensitive) effects at high concentrations. The results indicate that activating K+ flux through mitoK(Ca) mediates a beneficial effect on energetics that depends on mitochondrial swelling with maintained DeltaPsi(m).