Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Jul 2013
Mechanism of capsaicin receptor TRPV1-mediated toxicity in pain-sensing neurons focusing on the effects of Na(+)/Ca(2+) fluxes and the Ca(2+)-binding protein calretinin.
Transient receptor potential vanilloid subtype 1 (TRPV1) receptor is a pain-sensing, ligand-gated, non-selective cation channel expressed in peripheral sensory neurons. Prolonged activation of TRPV1 by capsaicin leads to cell swelling and formation of membrane blebs in rat dorsal root ganglion (DRG) neurons. Similar results were obtained in NIH3T3 fibroblast cells stably expressing TRPV1. ⋯ Swelling and formation of membrane blebs resulted in impaired plasma membrane integrity finally leading to cell death. Our results hint towards a mechanistic explanation for the apoptosis-independent capsaicin-evoked neuronal loss and additionally reveal a protective effect of calretinin; we propose that the Ca(2+)-buffering capacity of calretinin reduces the susceptibility of calretinin-expressing DRG neurons against cell swelling/death caused by overstimulation of TRPV1 channels. This article is part of a Special Issue entitled:12th European Symposium on Calcium.
-
Biochim. Biophys. Acta · Jul 2013
ReviewMechanisms of conotoxin inhibition of N-type (Ca(v)2.2) calcium channels.
N-type (Ca(v)2.2) voltage-gated calcium channels (VGCC) transduce electrical activity into other cellular functions, regulate calcium homeostasis and play a major role in processing pain information. Although the distribution and function of these channels vary widely among different classes of neurons, they are predominantly expressed in nerve terminals, where they control neurotransmitter release. To date, genetic and pharmacological studies have identified that high-threshold, N-type VGCCs are important for pain sensation in disease models. ⋯ Surprisingly, however, α-conotoxins Vc1.1 and RgIA, also potently inhibit N-type VGCC currents in the sensory DRG neurons of rodents and α9 nAChR knockout mice, via intracellular signaling mediated by G protein-coupled GABAB receptors. Understanding how conotoxins inhibit VGCCs is critical for developing these peptides into analgesics and may result in better pain management. This article is part of a Special Issue entitled: Calcium channels.