Optics express
-
We investigate theoretically and experimentally the parameters governing the accuracy of correction in modal sensorless adaptive optics for microscopy. On the example of two-photon fluorescence imaging, we show that using a suitable number of measurements, precise correction can be obtained for up to 2 radians rms aberrations without optimising the aberration modes used for correction. ⋯ We show that only 10(4) to 10(5) photons are required for complete correction so that the correction process can be implemented with limited extra-illumination and associated photoperturbation. Finally, we provide guidelines for implementing an optimal correction algorithm depending on the experimental conditions.
-
Speckle pattern, which is inherent in coherence imaging, influences significantly axial and transversal resolution of Optical Coherence Tomography (OCT) instruments. The well known speckle removal techniques are either sensitive to sample motion, require sophisticated and expensive sample tracking systems, or involve sophisticated numerical procedures. As a result, their applicability to in vivo real-time imaging is limited. ⋯ Ultrahigh speed CMOS camera serves as a detector and acquires 200,000 spectra per second. A dedicated A-scan generation algorithm allows for real-time display of images with reduced speckle contrast at 6 frames/second. This technique is applied to in vivo imaging of anterior and posterior segments of the human eye and human skin.
-
Fringe patterns are raw output data from many measurement systems including laser interferometers and moiré systems. For instruments with a range of zoom levels to measure the object at different scales, a technique (algorithm) is needed to combine and/or compare data to obtain information at different levels of details. A technique to keep the continuity of output images both at different levels of zoom and within the same level of zoom is developed and demonstrated. ⋯ Interferomteric fringes are used to find the required parameters to inter-relate locations and scale of the fringe patterns at different levels of zoom. The calculated parameters are scale and translation in both directions; these parameters make it possible to locate the coordinates of the region that the measurement system is zoomed in on, related to the area with lower magnification and relative locations of images within the same level of zoom. Results show that this technique is capable of finding the scale and shift parameters within the resolution of one pixel and therefore can restore continuity between images at different levels of zoom.