Toxicology and applied pharmacology
-
Toxicol. Appl. Pharmacol. · May 1990
Comparative StudyRat embryonic palatal shelves respond to TCDD in organ culture.
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a highly toxic environmental contaminant, is teratogenic in mice, inducing cleft palate (CP) and hydronephrosis at doses which are not overtly maternally or embryo toxic. Palatal shelves of embryonic mice respond to TCDD, both in vivo and in organ culture, with altered differentiation of medial epithelial cells. By contrast, in the rat TCDD produces substantial maternal, embryonic, and fetal toxicity, including fetal lethality, with few malformations. ⋯ The altered differentiation of rat medial epithelium is similar to that reported for TCDD-exposed mouse medial cells in vivo and in vitro. However, in order to obtain these responses, the cultured rat shelves require much higher concentrations of TCDD than the mouse shelves. Thus TCDD induces the same effects at a cellular level in medial epithelium of rats and mice, but cleft palate is not seen in rats because the level required to produce the cellular effects would result in maternal and embryonic toxicity including fetal lethality.
-
Toxicol. Appl. Pharmacol. · May 1990
Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats.
Fischer-344 rats were exposed for 4 hr to various concentrations of hydrogen sulfide (H2S) gas and killed either immediately or at 1, 24, or 48 hr after exposure. Mitochondrial fractions from lung tissues were assayed for the activities of respiratory chain enzymes. Exposure of rats to a low concentration (10 ppm) of H2S caused no significant changes in the activities of lung mitochondrial enzymes. ⋯ The nature of sulfide inhibition of cytochrome c oxidase was noncompetitive with respect to ferrocytochrome c. Because the activities of NADH-cytochrome c reductase and succinate-cytochrome c reductase were not significantly altered by H2S exposure and in vitro treatments with low concentrations of sulfide, it is concluded that under physiological conditions H2S would block the respiratory chain primarily by inhibiting cytochrome c oxidase. Such a biochemical impairment would lead to functional (histotoxic) hypoxia in the lung tissues.