Thorax
-
The lung clearance index (LCI) is a promising endpoint for use in cystic fibrosis (CF) clinical trials, but correlations with validated clinical endpoints have not yet been established. ⋯ Baseline LCI predicts PE in young patients with CF and correlates with CFQ-Rresp, a validated patient-reported outcome, even in the subgroup with normal FEV1. These data further support the use of LCI as a surrogate outcome measure in CF clinical trials.
-
Hyperpolarised (3)He MRI provides a way to visualise regional pulmonary functional abnormalities that in asthma are thought to be related to airway morphological abnormalities. However, the exact aetiology of ventilation defects in asthma is not well understood. ⋯ Subjects with asthma with (3)He ventilation defects were older with significantly worse airway hyper-responsiveness, inflammation and airway remodelling but similar FEV1 as subjects with asthma without defects; hyperpolarised (3)He ventilation abnormalities were spatially and quantitatively related to abnormally remodelled airways.
-
Randomized Controlled Trial
Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity.
A core feature of chronic obstructive pulmonary disease (COPD) is the accelerated decline in forced expiratory volume in one second (FEV1). The recent Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD) study suggested that particular phenotypes of COPD benefit from fluticasone±salmeterol by reducing the rate of FEV1 decline, yet the underlying mechanisms are unknown. ⋯ The present study suggests that gene expression in biological pathways of COPD is dynamic with treatment and reflects disease activity. This study opens the gate to targeted and molecular phenotype-driven therapy of COPD.
-
Review
Moving from the Oslerian paradigm to the post-genomic era: are asthma and COPD outdated terms?
In the majority of cases, asthma and chronic obstructive pulmonary disease (COPD) are two clearly distinct disease entities. However, in some patients there may be significant overlap between the two conditions. This constitutes an important area of concern because these patients are generally excluded from randomised controlled trials (mostly because of smoking history in the case of asthma or because of significant bronchodilator reversibility in the case of COPD). ⋯ This may lead to suboptimal management and can limit the development of more personalised therapeutic options. Emerging genetic and molecular information coupled with new bioinformatics capabilities provide novel information that can pave the way towards a new taxonomy of airway diseases. In this paper we question the current value of the terms 'asthma' and 'COPD' as still useful diagnostic labels; discuss the scientific and clinical progress made over the past few years towards unravelling the complexity of airway diseases, from the definition of clinical phenotypes and endotypes to a better understanding of cellular and molecular networks as key pathogenic elements of human diseases (so-called systems medicine); and summarise a number of ongoing studies with the potential to move the field towards a new taxonomy of airways diseases and, hopefully, a more personalised approach to medicine, in which the focus will shift from the current goal of treating diseases as best as possible to the so-called P4 medicine, a new type of medicine that is predictive, preventive, personalised and participatory.