Annals of translational medicine
-
In addition to fluid resuscitation, the vasopressor therapy is a fundamental treatment of septic shock-induced hypotension as it aims at correcting the vascular tone depression and then at improving organ perfusion pressure. Experts' recommendations currently position norepinephrine (NE) as the first-line vasopressor in septic shock. Vasopressin and its analogues are only second-line vasopressors as strong recent evidence suggests no benefit of their early administration in spite of promising preliminary data. ⋯ Available data suggest a MAP of 65 mmHg as the initial target but a more individualized approach is often required depending on several factors such as history of chronic hypertension or value of central venous pressure (CVP). In cases of refractory hypotension, increasing NE up to doses ≥1 µg/kg/min could be an option. However, current experts' guidelines suggest to combine NE with other vasopressors such as vasopressin, with the intent to rising the MAP to target or to decrease the NE dosage.
-
In the late 19th century, Otto Frank published the first description of a ventricular pressure-volume diagram, thus laid the foundation for modern cardiovascular physiology. Since then, the analysis of the pressure-volume loops became a reference tool for the study of the ventricular pump properties. However, understanding cardiovascular performance requires both the evaluation of ventricular properties and the modulating effects of the arterial system, since the heart and the arterial tree are anatomically and functionally related structures. ⋯ Moreover, this analysis could also provide valuable information about their pathophysiological mechanisms and may help to determine the best therapeutic strategy to correct them. In this review, we will describe the basic principles of the VA coupling assessment, its limitations, and the most common methods for its estimation at the bedside. Then, we will summarize the current knowledge of the application of VA coupling in critically ill patients and suggest some recommendations for further research.
-
Fluid responsiveness is defined as an increase in cardiac output (CO) or stroke volume (SV) of >10-15% after fluid challenge (FC). However, CO or SV monitoring is often not available in clinical practice. The aim of this study was to evaluate whether changes in radial artery pulse pressure (rPP) induced by FC or passive leg raising (PLR) correlates with changes in SV in patients after cardiac surgery. ⋯ Changes in rPP might be used to detect changes in SV via FC in mechanically ventilated patients after cardiac surgery. In contrast, changes in rPP induced by PLR are unreliable predictors of fluid responsiveness.
-
Since the first appearance in Wuhan, China in December 2019, the novel coronavirus disease (COVID-19) has posed serious threats to the public health in many Chinese places and overseas. It is essential to quantify the transmissibility on real-time basis for designing public health responses. ⋯ The control of COVID-19 epidemic was effective in substantially reducing the disease transmissibility in terms of the reproduction number in China reduced to 0.98 as of February 16. At the same time, the reproduction number in Wuhan was probably still larger than 1, and thus the enhancement in the public health control was recommended to maintain.
-
To investigate whether increased the comorbidities such as coronary artery disease (CAD) and risks between Hashimoto's thyroiditis (HT) and polycystic ovary syndrome (PCOS) in Taiwanese women. ⋯ In our study, the PCOS risk in patients with HT increased by 2.37 times, which is lower than the increase in HT risk in Asian patients with PCOS (4.56 times). The proportion of CAD increased significantly by 5.92 times in patients with HT and PCOS compared with patients with HT only.