European journal of nuclear medicine
-
Multicenter Study
A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer.
A multicentre observational study was conducted by the Italian Association of Nuclear Medicine between 1996 and 1998. Twenty-nine Nuclear Medicine Departments participated. The aims of the study were to systematically evaluate the efficacy, toxicity and repeatability of radionuclide therapy of painful bone metastases (RTBM) in a large number of patients and to assess its incidence in patients with prostate cancer. ⋯ Haematological toxicity (mild to moderate in most cases) mainly affected platelets, and was observed in 25.5% of cases overall and in 38.9% of retreatments. RTBM did not seem to prolong life, though in some cases scintigraphic regression of bone metastases was observed. The two radiopharmaceuticals did not show any statistically significant differences in palliative efficacy and toxicity, either in first RTBM or in retreatments.
-
Multicenter Study Comparative Study Clinical Trial
Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin's lymphoma.
Dosimetry studies in patients with non-Hodgkin's lymphoma were performed to estimate the radiation absorbed dose to normal organs and bone marrow from 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) treatment in this phase I/II, multicenter trial. The trial was designed to determine the dose of Rituximab (chimeric anti-CD20, Rituxan, IDEC-C2B8, MabThera), the unlabeled antibody given prior to the radioconjugate to clear peripheral blood B cells and optimize distribution, and to determine the maximum tolerated dose of 90Y-Zevalin [7.4, 11, or 15 MBq/kg (0.2, 0.3, or 0.4 mCi/kg)]. Patients received (111)In-Zevalin (indium-111 ibritumomab tiuxetan, IDEC-In2B8 ) on day 0 followed by a therapeutic dose of 90Y-Zevalin on day 7. ⋯ No correlation was noted between hematologic toxicity and the following variables: red marrow radiation absorbed dose, blood T(1/2), blood AUC, plasma T(1/2), and plasma AUC. It is concluded that 90Y-Zevalin administered at nonmyeloablative maximum tolerated doses results in acceptable radiation absorbed doses to normal organs. The only toxicity of note is hematologic and is not correlated to red marrow radiation absorbed dose estimates or T(1/2), reflecting that hematologic toxicity is dependent on bone marrow reserve in this heavily pretreated population.