International journal of molecular sciences
-
Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 μg/mL bovine serum albumine (BSA) or AGEs-BSA for 12, 24 and 48 h. ⋯ The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs-BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells.
-
Sepsis is the manifestation of the immune and inflammatory response to infection that may ultimately result in multi organ failure. Despite the therapeutic strategies that have been used up to now, sepsis and septic shock remain a leading cause of death in critically ill patients. Myocardial dysfunction is a well-described complication of severe sepsis, also referred to as septic cardiomyopathy, which may progress to right and left ventricular pump failure. ⋯ A well-investigated abnormality in septic cardiomyopathy is mitochondrial dysfunction, which likely contributes to cardiac dysfunction by causing myocardial energy depletion. A number of mechanisms have been proposed to cause mitochondrial dysfunction in septic cardiomyopathy, although it remains controversially discussed whether some mechanisms impair mitochondrial function or serve to restore mitochondrial function. The purpose of this review is to discuss mitochondrial mechanisms that may causally contribute to mitochondrial dysfunction and/or may represent adaptive responses to mitochondrial dysfunction in septic cardiomyopathy.