International journal of molecular sciences
-
Angiogenesis is a complex biological process that plays a relevant role in sustaining the microenvironment, growth, and metastatic potential of several tumors, including non-small cell lung cancer (NSCLC). Bevacizumab was the first angiogenesis inhibitor approved for the treatment of patients with advanced NSCLC in combination with chemotherapy; however, it was limited to patients with non-squamous histology and first-line setting. Approval was based on the results of two phase III trials (ECOG4599 and AVAIL) that demonstrated an improvement of about two months in progression-free survival (PFS) in both trials, and in the ECOG4599 trial, an improvement in overall survival (OS) also. ⋯ In the LUME-Lung 1 study, nintedanib plus docetaxel prolonged the median PFS of patients with any tumor histology (p = 0.0019), and improved OS (12.6 versus 10.3 months) in patients with adenocarcinoma. As a result, it became a new option for the second-line treatment of patients with advanced NSCLC and adenocarcinoma histology. Identifying predictive biomarkers to optimize the benefit of antiangiogenic drugs remains an ongoing challenge.
-
Many of the tripartite motif (TRIM) proteins function as E3 ubiquitin ligases and are assumed to be involved in various events, including oncogenesis. In regard to tripartite motif-containing 44 (TRIM44), which is an atypical TRIM family protein lacking the RING finger domain, its pathophysiological significance in breast cancer remains unknown. We performed an immunohistochemical study of TRIM44 protein in clinical breast cancer tissues from 129 patients. ⋯ Notably, TRIM44 knockdown impaired nuclear factor-kappa B (NF-κB)-mediated transcriptional activity stimulated by tumor necrosis factor α (TNFα). Moreover, TRIM44 knockdown substantially attenuated the TNFα-dependent phosphorylation of the p65 subunit of NF-κB and IκBα in both MCF-7 and MDA-MB-231 cells. TRIM44 would play a role in the progression of breast cancer by promoting cell proliferation and migration, as well as by enhancing NF-κB signaling.
-
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP- and cGMP-regulated chloride (Cl-) and bicarbonate (HCO₃-) channel localized primarily at the apical plasma membrane of epithelial cells lining the airway, gut and exocrine glands, where it is responsible for transepithelial salt and water transport. Several human diseases are associated with altered CFTR channel function. Cystic fibrosis (CF) is caused by the absence or dysfunction of CFTR channel activity, resulting from mutations in the gene. ⋯ The intracellular processing, trafficking, apical membrane localization, and channel function of CFTR are regulated by dynamic protein-protein interactions in a complex network. In this paper, we review the current knowledge of a macromolecular complex of CFTR, Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2), and lysophosphatidic acids (LPA) receptor 2 (LPA₂) at the apical plasma membrane of airway and gut epithelial cells, and discuss its relevance in human physiology and diseases. We also explore the possibilities of targeting this complex to fine tune CFTR channel activity, with a hope to open up new avenues to develop novel therapies for CF and secretory diarrhea.