International journal of molecular sciences
-
The MEK (mitogen-activated protein kinase)⁻inhibitor selumetinib led to increased radioiodine uptake and retention in a subgroup of patients suffering from radioiodine refractory differentiated thyroid cancer (RR-DTC). We aimed to analyse the effect of selumetinib on the expression of sodium iodide symporter (NIS; SLC5A5) and associated miRNAs in thyroid cancer cells. ⋯ The study shows for the first time that selumetinib restores NIS by the inhibition of its related targeting miRNAs. Further studies are needed to clarify the exact mechanism activated by hsa-miR-146b-5p, hsa-miR-146b-3p and hsa-let7f-5p to stabilise NIS. Restoration of NIS could represent a milestone for the treatment of advanced RR-DTC.
-
Many insights into human disease have been built on experimental results in Drosophila, and research in fruit flies is often justified on the basis of its predictive value for questions related to human health. Additionally, there is now a growing recognition of the value of Drosophila for the study of rare human genetic diseases, either as a means of validating the causative nature of a candidate genetic variant found in patients, or as a means of obtaining functional information about a novel disease-linked gene when there is little known about it. For these reasons, funders in the US, Europe, and Canada have launched targeted programs to link human geneticists working on discovering new rare disease loci with researchers who work on the counterpart genes in Drosophila and other model organisms. Several of these initiatives are described here, as are a number of output publications that validate this new approach.
-
An increasing body of evidence postulates that microglia are the main mediators of inflammation-related disorders, including depression. Since activated microglia produce a wide range of pro- and anti-inflammatory factors, the modulation of M1/M2 microglial polarization by antidepressants may be crucial in the treatment of depression. The current paper aimed to investigate the impact of tianeptine on the microglia’s viability/death parameters, and on M1/M2 microglial activation in response to lipopolysaccharide (LPS) stimulation. ⋯ Collectively, we demonstrated that tianeptine has protective properties and inhibits M1 polarization, thus attenuating the production of inflammatory mediators. Moreover, we found that M1 microglia suppression may be related to the NLRP3 inflammasome and TLR4 signaling. These findings suggest that a better understanding of the multifaceted mechanisms of tianeptine action on microglia may increase the effectiveness of therapy, where inflammation is a central hallmark.