International journal of molecular sciences
-
Head and neck squamous cell carcinoma (HNSCC) is often diagnosed at an advanced stage and has a dismal prognosis. Nearly 10 years after the approval of cetuximab, anti-PD1/PD-L1 checkpoint inhibitors are the first drugs that have shown any survival benefit for the treatment on platinum-refractory recurrent/metastatic (R/M) HNSCC. Furthermore, checkpoint inhibitors are better tolerated than chemotherapy. ⋯ Therefore, the identification of predictive biomarkers of response and resistance to anti-PD1/PD-L1 is a key point for better selecting patients that would benefit the most from immunotherapy. Furthermore, the combination of checkpoint inhibitors with various agents is being currently evaluated to improve the response rate, prolong response duration, and even increase the chances for a cure. In this review, we summarize the most important results regarding immune targeting agents for HNSCC, predictive biomarkers for resistance to immune therapies, and future perspectives.
-
Although natural killer (NK) cell function is a hallmark of hemophagocytic lymphohistiocytosis (HLH), there is no standard method or data on its diagnostic value in adults. Thus, we performed a single-center retrospective study of 119 adult patients with suspected HLH. NK cell function was determined using both flowcytometry-based NK-cytotoxicity test (NK-cytotoxicity) and NK cell activity test for interferon-gamma (NKA-IFNγ). ⋯ Decreased NKA-IFNγ was associated with decreased serum cytokine levels. We suggest that both NK-cytotoxicity and NKA-IFNγ could be used for diagnosis of HLH. Further studies are needed to validate the diagnostic and prognostic value of NK cell function tests.
-
Aberrant expression of programmed death ligand 1 (PD-L1) on tumor cells impedes antitumor immunity and instigates immune evasion. The remarkable efficacy of immune checkpoint blockade has been confirmed in various solid tumors. However, the correlation between PD-L1 expression and host immunological landscape remains of considerable controversy in non-small cell lung cancer (NSCLC). ⋯ Moreover, Cox multivariate regression analysis showed that the combination of PD-L1 and CD8 were independent prognostic factors, which was more accurate in prediction of prognosis in NSCLC than individually. Finally, we found that IFN-γ induced the upregulation of PD-L1 in NSCLC cells, mainly through the JAK/STAT1 signaling pathway. In conclusion, PD-L1 expression is mainly induced by activated CD8+ TILs via IFN-γ in the immune milieu and indicates pre-existing adaptive immune response in NSCLC.
-
Mast cells (MCs) recognize antigens (Ag) via IgE-bound high affinity IgE receptors (FcεRI) and trigger type I allergic reactions. FcεRI-mediated MC activation is regulated by various G protein-coupled receptor (GPCR) agonists. We recently reported that ionotropic P2X4 receptor (P2X4R) stimulation enhanced FcεRI-mediated degranulation. ⋯ MC-dependent PGE2-triggered vascular hyperpermeability was abrogated in a P2X4R-deficient mouse ear edema model. Collectively, our results suggest that P2X4R signaling enhances EP3R-mediated MC activation via a different mechanism to that involved in enhancing Ag-induced responses. Moreover, the cooperative effects of the common inflammatory mediators ATP and PGE2 on MCs may be involved in Ag-independent hypersensitivity in vivo.
-
The bone regeneration efficiency of bone marrow mesenchymal stem cells (BMSCs) and dental pulp mesenchymal stem cells (DPSCs) combined with xenografts in the craniofacial region remains unclear. Accordingly, this study commenced by comparing the cell morphology, cell proliferation, trilineage differentiation, mineral synthesis, and osteogenic gene expression of BMSCs and DPSCs in vitro. Four experimental groups (empty control, Bio-Oss only, Bio-Oss+BMSCs, and Bio-Oss+DPSCs) were then designed and implanted in rabbit calvarial defects. ⋯ Moreover, the new bone formation and Collagen I / osteoprotegerin protein expressions of the scaffold+MSC groups were higher than those of the Bio-Oss only group. Finally, the Bio-Oss+BMSC and Bio-Oss+DPSC groups had a similar bone mineral density, new bone formation, and osteogenesis-related protein expression. Overall, the DPSCs seeded on Bio-Oss matched the bone regeneration efficacy of BMSCs in vivo and hence appear to be a promising strategy for craniofacial defect repair in future clinical applications.