International journal of molecular sciences
-
A poor socioeconomic environment and social adversity are fundamental determinants of human life span, well-being and health. Previous influenza pandemics showed that socioeconomic factors may determine both disease detection rates and overall outcomes, and preliminary data from the ongoing coronavirus disease (COVID-19) pandemic suggests that this is still true. Over the past years it has become clear that early-life adversity (ELA) plays a critical role biasing the immune system towards a pro-inflammatory and senescent phenotype many years later. ⋯ In order to do this, we need to recognize socioeconomic and early-life factors as genuine medically and clinically relevant data that urgently need to be collected. Finally, many biological samples have been collected in the ongoing studies. The mechanisms linking the early life environment with a defined later-life phenotype are starting to be elucidated, and perhaps hold the key to understanding inequalities and differences in the severity of COVID-19.
-
Transient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons and regulate nociceptor and inflammatory functions. Resolvins are endogenous lipid mediators. Resolvin D1 (RvD1) is described as a selective inhibitor of TRPA1-related postoperative and inflammatory pain in mice acting on the G protein-coupled receptor DRV1/GPR32. ⋯ Since CHO cells are unlikely to express resolvin receptors, resolvins are suggested to inhibit channel opening through surrounding lipid raft disruption. Here, we proved the ability of resolvins to alter the membrane polarity related to cholesterol composition by fluorescence spectroscopy. It is concluded that targeting lipid raft integrity can open novel peripheral analgesic opportunities by decreasing the activation of nociceptors.
-
Cancer patients have an incidence of about 60% kidney disease development and are at elevated risk of acute renal damage. Kidney disease in these patients is frequently associated with nephrotoxicity from the ongoing oncological treatment. New anticancer therapeutic strategies, such as targeted therapies and immunotherapies, offer substantial benefits in the treatment of many neoplasms. ⋯ Nephrologists need to be knowledgeable about the array of such renal toxicities for effective collaboration with the oncologist in the prevention and management of kidney involvement. Renal adverse effects may range from asymptomatic proteinuria to renal failure, and their prompt identification and timely treatment is essential for optimal and safe care of the patient. In this article, after presenting clinical cases we discuss the differing renal toxicity of three novel anticancer agents (aflibercept, dasatinib, and nivolumab) and possible measures to counter it.
-
Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. ⋯ Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.
-
Opioid analgesics such as morphine have indispensable roles in analgesia. However, morphine use can elicit side effects such as respiratory depression and constipation. It has been reported that G protein-biased agonists as substitutes for classic opioid agonists can alleviate (or even eliminate) these side effects. ⋯ Differences in conformational changes of W3187.35, Y3267.43, and Y3367.53 in PZM21 and TRV130 explained the observed differences in bias between these ligands. The extent of water movements across the receptor channel was correlated with analgesic effects. Taken together, these data suggest that the observed differences in conformational changes of the studied MOR-ligand complexes point to the low-potency and lower bias effects of PZM21 compared with the other two ligands, and they lay the foundation for the development of G protein-biased agonists.