International journal of molecular sciences
-
Cardiac troponin I (cTn I) and cardiac troponin T (cTn T) are currently widely used as diagnostic biomarkers for myocardial injury caused by ischemic heart diseases in clinical and forensic medicine. However, no previous meta-analysis has summarized the diagnostic roles of postmortem cTn I and cTn T. The aim of the present study was to meta-analyze the diagnostic roles of postmortem cTn I and cTn T for cardiac death in forensic medicine, present a systematic review of the previous literature, and determine the postmortem cut-off values of cTn I and cTn T. ⋯ The present meta-analysis demonstrated that postmortem cTn I and cTn T levels were increased in pericardial fluid and serum in cardiac death, especially in patients with acute myocardial infarction (AMI). We determined the postmortem cut-off value of cTn I in the pericardial fluid at 86.2 ng/mL, cTn I in serum at 9.5 ng/mL, and cTn T in serum at 8.025 ng/mL.
-
Review Meta Analysis
Pathophysiology and the Monitoring Methods for Cardiac Arrest Associated Brain Injury.
Cardiac arrest (CA) is a well-known cause of global brain ischemia. After CA and subsequent loss of consciousness, oxygen tension starts to decline and leads to a series of cellular changes that will lead to cellular death, if not reversed immediately, with brain edema as a result. ⋯ In this review, we will discuss the pathophysiology of brain edema after CA, some available techniques, and methods to monitor brain oxygen, electroencephalography (EEG), ICP (intracranial pressure), and microdialysis on its measurement of cerebral metabolism and its usefulness both in clinical practice and possible basic science research in development. With this review, we hope to gain knowledge of the more personalized information about patient status and specifics of their brain injury, and thus facilitating the physicians' decision making in terms of which treatments to pursue.