International journal of molecular sciences
-
The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. ⋯ In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro.
-
The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. ⋯ In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.
-
A positive family history is a strong and consistently reported risk factor for gastric cancer (GC). So far, it has been demonstrated that serum pepsinogens (PGs), and gastrin 17 (G17) are useful for screening individuals at elevated risk to develop atrophic gastritis but they are suboptimal biomarkers to screen individuals for GC. The main purpose of this study was to investigate serum metabolomic profiles to find additional biomarkers that could be integrated with serum PGs and G17 to improve the diagnosis of GC and the selection of first-degree relatives (FDR) at higher risk of GC development. ⋯ Compared with FDR, GC patients were characterized by lower levels of hydroxylated sphingomyelins (SM(OH)22:1, SM(OH)22:2, SM(OH)24:1) and phosphatidylcholines (PC ae 40:1, PC ae 42:2, PC ae 42:3) and by higher levels of acylcarnitines derivatives (C2, C16, C18:1). The specificity and sensitivity of the integrative risk prediction analysis of metabolites for GC was 73.47% and 83.78% respectively with an area under the curve of the ROC curve of 0.811 that improves to 0.90 when metabolites were integrated with the serum PGs. The predictive risk algorithm composed of the C16, SM(OH)22:1 and PG-II serum levels according to the age of individuals, could be used to stratify FDR at high risk of GC development, and then this can be addressed with diagnostic gastroscopy.
-
Chronic Administration of Hydroxyurea (HU) Benefits Caucasian Patients with Sickle-Beta Thalassemia.
In sickle cell disease (SCD), hydroxyurea (HU) treatment decreases the number of vaso-occlusive crisis (VOC) and acute chest syndrome (ACS) by increasing fetal hemoglobin (HbF). Data are lacking regarding the frequency of HU dose modification or whether sub-therapeutic doses (<15 mg/kg/day) are beneficial. We reviewed the medical records of 140 patients from 2010 to 2014. ⋯ The maximal HbF response to HU in HbS/β⁺-thalassemia was 20%, similar to those observed for HbSS (19%) and HbS/β⁰-thalassemia (22%). HbS/β⁺-thalassemia could have a similar disease severity as HbSS or HbS/β⁰-thalassemia. Patients with HbS/β⁰-thalassemia or HbS/β⁺-thalassemia phenotypes responded to HU.
-
Heart failure is defined as a disruption of circulatory homeostasis. We have demonstrated that baroreflex dysfunction strikingly disrupts circulatory homeostasis. Moreover, previous many reports have suggested that central excess oxidative stress causes sympathoexcitation in heart failure. ⋯ In the heart failure treated with intracerebroventricular (ICV) infusion of angiotensin II type 1 receptor blocker (ARB), sympathetic activation and brain oxidative stress were significantly lower, and baroreflex sensitivity and volume tolerance were significantly higher than in heart failure treated with vehicle. ICV infusion of Nrf2 activator decreased sympathetic activation and brain oxidative stress, and increased baroreflex sensitivity and volume tolerance to a greater extent than ARB. In conclusion, the disruption of central antioxidant property of Nrf2 worsened circulatory homeostasis with baroreflex dysfunction in heart failure.