International journal of molecular sciences
-
Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS) is a severe inflammatory pulmonary process triggered by a variety of insults including sepsis, viral or bacterial pneumonia, and mechanical ventilator-induced trauma. Currently, there are no effective therapies available for ARDS. We have recently reported that a novel small molecule AVR-25 derived from chitin molecule (a long-chain polymer of N-acetylglucosamine) showed anti-inflammatory effects in the lungs. The goal of this study was to determine the efficacy of two chitin-derived compounds, AVR-25 and AVR-48, in multiple mouse models of ALI/ARDS. We further determined the safety and pharmacokinetic (PK) profile of the lead compound AVR-48 in rats. ⋯ Both AVR-25 and AVR-48 demonstrate the potential to be developed as therapeutic agents to treat ALI/ARDS.
-
The aim of pharmacological conditioning is to protect the heart against myocardial ischemia-reperfusion (I/R) injury and its consequences. There is extensive literature that reports a multitude of different cardioprotective signaling molecules and mechanisms in diverse experimental protocols. Several pharmacological agents have been evaluated in terms of myocardial I/R injury. ⋯ This narrative review wants to focus on two aspects: (1) give a comprehensive update on new developments of pharmacological conditioning in the experimental setting concentrating on recent literature of the last two years and (2) briefly summarize clinical evidence of these cardioprotective substances in the perioperative setting highlighting their clinical implications. By directly opposing each pharmacological agent regarding its recent experimental knowledge and most important available clinical data, a clear overview is given demonstrating the remaining gap between basic research and clinical practice. Finally, future perspectives are given on how we might overcome the limited translatability in the field of pharmacological conditioning.
-
Endotoxin removal therapy with polymyxin B immobilized fiber column (PMX) has been clinically applied for sepsis and septic shock patients since 1994. The effectiveness and usefulness of this therapy have been demonstrated for more than a quarter of a century. However, a documented survival benefit has not yet been demonstrable in a large, multicenter, randomized and controlled trial. ⋯ These effects and other potential immune effects may explain some of the improved effects upon organ dysfunction of sepsis and septic shock patients. Endotoxemia may be involved in the pathophysiology of other diseases than sepsis. A rapid diagnostic method to detect and target endotoxemia could allow us to practice precision medicine and expand the clinical indications of endotoxin removal therapy.
-
Oral submucous fibrosis (OSF) is known as a potentially malignant disorder, which may result from chemical irritation due to areca nuts (such as arecoline). Emerging evidence suggests that fibrogenesis and carcinogenesis are regulated by the interaction of long noncoding RNAs (lncRNAs) and microRNAs. Among these regulators, profibrotic lncRNA H19 has been found to be overexpressed in several fibrosis diseases. ⋯ In OSF tissues, we found that the expression of miR-29b was downregulated and there was a negative correlation between miR-29b and these fibrosis markers. Lastly, we demonstrate that arecoline stimulated the upregulation of H19 through the transforming growth factor (TGF)-β pathway. Altogether, this study suggests that increased TGF-β secretion following areca nut chewing may induce the upregulation of H19, which serves as a natural sponge for miR-29b and impedes its antifibrotic effects.
-
Fibrinogen is the first coagulation protein to reach critically low levels during traumatic haemorrhage. There have been no differential effects on clinical outcomes between the two main sources of fibrinogen replacement: cryoprecipitate and fibrinogen concentrate (Fg-C). However, the constituents of these sources are very different. ⋯ Cryoprecipitate therapy improved TG potential, increased fibrinolytic resistance and formed more homogeneous fibrin clots, compared to Fg-C. In summary, our data indicate that cryoprecipitate may be a superior source of fibrinogen to successfully control bleeding in trauma coagulopathy. However, these different products require evaluation in a clinical setting.