International journal of molecular sciences
-
Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.
-
Due to the CD1d restricted recognition of altered glycolipids, Vα24-invariant natural killer T (iNKT) cells are excellent tools for cancer immunotherapy with a significantly reduced risk for graft-versus-host disease when applied as off-the shelf-therapeutics across Human Leukocyte Antigen (HLA) barriers. To maximally harness their therapeutic potential for multiple myeloma (MM) treatment, we here armed iNKT cells with chimeric antigen receptors (CAR) directed against the MM-associated antigen CD38 and the plasma cell specific B cell maturation antigen (BCMA). We demonstrate that both CD38- and BCMA-CAR iNKT cells effectively eliminated MM cells in a CAR-dependent manner, without losing their T cell receptor (TCR)-mediated cytotoxic activity. ⋯ While the costimulatory domain of CD38-CARs had no influence on the cytotoxic functions of iNKT cells, CARs containing the 4-1BB domain showed a better expansion capacity. Interestingly, when stimulated only via CD1d+ dendritic cells (DCs) loaded with α-galactosylceramide (α-GalCer), both CD38- and BCMA-CAR iNKT cells expanded well, without losing their CAR- or TCR-dependent cytotoxic activities. This suggests the possibility of developing an off-the-shelf therapy with CAR iNKT cells, which might even be boostable in vivo by administration α-GalCer pulsed DCs.
-
The occurrence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVD-19), represents a catastrophic threat to global health. Protruding from the viral surface is a densely glycosylated spike (S) protein, which engages angiotensin-converting enzyme 2 (ACE2) to mediate host cell entry. ⋯ Recognition of carbohydrate moieties clustered on the surface of the S protein may drive receptor-dependent internalization, accentuate severe immunopathological inflammation, and allow for systemic spread of infection, independent of ACE2. Furthermore, targeting TLRs, CLRs, and other receptors (Ezrin and dipeptidyl peptidase-4) that do not directly engage SARS-CoV-2 S protein, but may contribute to augmented anti-viral immunity and viral clearance, may represent therapeutic targets against COVID-19.
-
Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. ⋯ H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions.
-
Neutrophils are recruited into the heart at an early stage following a myocardial infarction (MI). These secrete several proteases, one of them being neutrophil elastase (NE), which promotes inflammatory responses in several disease models. It has been shown that there is an increase in NE activity in patients with MI; however, the role of NE in MI remains unclear. ⋯ Western blot analyses revealed that the expression levels of insulin receptor substrate 1 and phosphorylation of Akt were significantly upregulated in NE-knockout mouse hearts, indicating that NE deficiency might improve cardiac survival by upregulating insulin/Akt signaling post-MI. Thus, NE may enhance myocardial injury by inducing an excessive inflammatory response and suppressing Akt signaling in cardiomyocytes. Inhibition of NE might serve as a novel therapeutic target in the treatment of MI.