Progress in neurological surgery
-
The interest for the sphenopalatine ganglion (SPG) in neurovascular headaches dates back to 1908 when Sluder presented his work on the role of the SPG in 'nasal headaches', which are now part of the trigeminal autonomic cephalalgias and cluster headache (ICHD-III-beta). Since then various interventions with blocking or lesional properties have targeted the SPG (transnasal injection of lidocaine and other agents, alcohol or steroid injections, radiofrequency lesions, or even ganglionectomy); success rates vary, but benefit is usually transient. ⋯ Moreover, in some patients SPG stimulation has been associated with a significant and clinically meaningful reduction in cluster headache attack frequency; this preventive effect of SPG stimulation warrants further investigation. For migraine attacks, the outcome of a proof-of-concept study using a temporary electrode implanted in the pterygopalatine fossa was less encouraging; however, an ongoing multicenter trial is evaluating the efficacy of long-term SPG stimulation against sham stimulation for acute and preventive treatment in patients with frequent migraine.
-
The number of peripheral nerve stimulation (PNS) indications, targets, and devices is expanding, yet the development of the technology has been slow because many devices used for PNS do not have formal regulatory approval. Manufacturers have not sought Food and Drug Administration (FDA) approval for PNS devices because of a perceived lack of interest amongst practitioners and patients. Without FDA approval, companies cannot invest in marketing to educate the implanters and the patients about the benefits of PNS in the treatment of chronic pain. ⋯ As the targets and indications for PNS continue to expand, there will be an even greater need for customized technological solutions. It is up to the medical device industry to invest in the design and marketing of PNS technology and seek out FDA approval. Market forces will continue to push PNS into the mainstream and physicians will increasingly have the choice to implant devices specifically designed and approved to treat chronic peripheral nerve pain.
-
Pain in extremities may occur in a variety of central and peripheral neuropathic and nociceptive syndromes, some of which may respond to central neuromodulation procedures. Peripheral neuromodulation techniques, either as a stand-alone therapy or as an adjuvant to spinal cord stimulation, may be particularly effective when the pain is localized to a part of a single extremity or when the source of the pain is related to the malfunction of a known peripheral nerve. Further, peripheral neuromodulation is used to treat disorders in which central simulation fails to provide discrete therapeutic paresthesia. ⋯ Historical PNS strategies and innovative methods are reviewed and highlighted in this chapter. With the upcoming technological advances and new stimulation paradigms, along with clear updated guidelines statements, the utilization of PNS will likely continue to increase and improve the management of chronic pain syndromes in the extremities. The potential success of the novel devices specifically designed to target the peripheral nervous system is expected to positively impact and promote the use of PNS in treatment of chronic pain.
-
Some of the more common peripherally mediated pain disorders are postamputation stump pain and phantom pain. These disabling conditions have proven difficult to treat. Here we aim to illustrate an option to treat postamputation pain using peripheral neurostimulation techniques. ⋯ Each of the tested patients reported that HFAC block provided the most significant amount of pain reduction they had ever experienced when compared to other pain modalities tried since their amputations. The high-frequency electric nerve block technique is currently investigational pending FDA clearance. The next step for this modality is a pivotal trial, with the goal of having this therapy available to the mass market upon FDA clearance.
-
Dorsal root ganglion (DRG) stimulation has recently emerged as a new neuromodulation modality that stays on the intersection of the peripheral and central nervous system. With DRG location within the spinal column and with electrodes for DRG stimulation placed through the intraspinal epidural space, it may make more sense to group DRG stimulation together with more commonly used spinal cord stimulation (SCS) rather than peripheral nerve stimulation (PNS), particularly if one agrees that the stimulation delivered to DRG partly works downstream at the spinal cord level. ⋯ In addition to its efficacy, DRG stimulation of the spinal cord is associated with a lower rate of migrations and lack of positional side effects that may be seen with SCS and PNS. Here we summarize the knowledge base and clinical evidence for DRG stimulation of the spinal cord, and present hypotheses of its mechanism of action.