Progress in neurological surgery
-
Peripheral nerve stimulation (PNS) has been in use for over 50 years to treat patients suffering from chronic pain who have failed conservative treatments. Despite this long history, the devices being used have changed very little. In fact, current PNS technology was developed specifically for spinal cord stimulation. ⋯ The following chapter provides an overview of PNS technology throughout the years, outlining both the benefits and limitations. We will briefly explore the electrophysiology of PNS stimulation, with an emphasis on technology and indication-specific devices. Finally, design and technical requirements of an ideal PNS device will be discussed.
-
The number of peripheral nerve stimulation (PNS) indications, targets, and devices is expanding, yet the development of the technology has been slow because many devices used for PNS do not have formal regulatory approval. Manufacturers have not sought Food and Drug Administration (FDA) approval for PNS devices because of a perceived lack of interest amongst practitioners and patients. Without FDA approval, companies cannot invest in marketing to educate the implanters and the patients about the benefits of PNS in the treatment of chronic pain. ⋯ As the targets and indications for PNS continue to expand, there will be an even greater need for customized technological solutions. It is up to the medical device industry to invest in the design and marketing of PNS technology and seek out FDA approval. Market forces will continue to push PNS into the mainstream and physicians will increasingly have the choice to implant devices specifically designed and approved to treat chronic peripheral nerve pain.
-
Pain in extremities may occur in a variety of central and peripheral neuropathic and nociceptive syndromes, some of which may respond to central neuromodulation procedures. Peripheral neuromodulation techniques, either as a stand-alone therapy or as an adjuvant to spinal cord stimulation, may be particularly effective when the pain is localized to a part of a single extremity or when the source of the pain is related to the malfunction of a known peripheral nerve. Further, peripheral neuromodulation is used to treat disorders in which central simulation fails to provide discrete therapeutic paresthesia. ⋯ Historical PNS strategies and innovative methods are reviewed and highlighted in this chapter. With the upcoming technological advances and new stimulation paradigms, along with clear updated guidelines statements, the utilization of PNS will likely continue to increase and improve the management of chronic pain syndromes in the extremities. The potential success of the novel devices specifically designed to target the peripheral nervous system is expected to positively impact and promote the use of PNS in treatment of chronic pain.
-
Dorsal root ganglion (DRG) stimulation has recently emerged as a new neuromodulation modality that stays on the intersection of the peripheral and central nervous system. With DRG location within the spinal column and with electrodes for DRG stimulation placed through the intraspinal epidural space, it may make more sense to group DRG stimulation together with more commonly used spinal cord stimulation (SCS) rather than peripheral nerve stimulation (PNS), particularly if one agrees that the stimulation delivered to DRG partly works downstream at the spinal cord level. ⋯ In addition to its efficacy, DRG stimulation of the spinal cord is associated with a lower rate of migrations and lack of positional side effects that may be seen with SCS and PNS. Here we summarize the knowledge base and clinical evidence for DRG stimulation of the spinal cord, and present hypotheses of its mechanism of action.
-
Occipital nerve stimulation (ONS) continues to be investigated for the treatment of refractory chronic migraine. Results from case series and from prospective, sham-controlled clinical trials remain inconclusive regarding the efficacy of ONS for migraine treatment. Safety and implantation techniques require improvements since rates of lead migration, infection, and persistent stimulator-related pain continue to be high. Existing data justify further ONS trials with carefully chosen primary outcome(s), adequate statistical power, and improved surgical techniques.