Cardiovascular research
-
Cardiovascular research · Jul 2010
ReviewTherapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential.
Damage of the endothelial glycocalyx, which ranges from 200 to 2000 nm in thickness, decreases vascular barrier function and leads to protein extravasation and tissue oedema, loss of nutritional blood flow, and an increase in platelet and leucocyte adhesion. Thus, its protection or the restoration of an already damaged glycocalyx seems to be a promising therapeutic target both in an acute critical care setting and in the treatment of chronic vascular disease. ⋯ Tenable options are the application of hydrocortisone (inhibiting mast-cell degranulation), use of antithrombin III (lowering susceptibility to enzymatic attack), direct inhibition of the cytokine tumour necrosis factor-alpha, and avoidance of the liberation of natriuretic peptides (as in volume loading and heart surgery). Infusion of human plasma albumin (to maintain mechanical and chemical stability of the endothelial surface layer) seems the easiest treatment to implement.
-
Cardiovascular research · Jul 2010
ReviewMicrovascular fluid exchange and the revised Starling principle.
Microvascular fluid exchange (flow J(v)) underlies plasma/interstitial fluid (ISF) balance and oedematous swelling. The traditional form of Starling's principle has to be modified in light of insights into the role of ISF pressures and the recognition of the glycocalyx as the semipermeable layer of endothelium. Sum-of-forces evidence and direct observations show that microvascular absorption is transient in most tissues; slight filtration prevails in the steady state, even in venules. ⋯ Narrow breaks in the junctional strands of the cleft create high local outward fluid velocities, which cause a disequilibrium between the subglycocalyx space COP and ISF COP. Recent experiments confirm that the effect of ISF COP on J(v) is much less than predicted by the conventional Starling principle, in agreement with modern models. Using a two-pore system model, we also explore how relatively small increases in large pore numbers dramatically increase J(v) during acute inflammation.
-
Cardiovascular research · Jul 2010
ReviewVascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge.
Multiple processes modulate net blood-to-tissue exchange in a microvascular unit in normal and pathophysiological conditions. These include mechanisms that control the number and type of microvessels perfused, the balance of adhesion and contractile forces that determine the conductance of the spaces between endothelial cells to water and solutes, the pressure and chemical potential gradients determining the driving forces through these conductive pathways, and the organization of barriers to macromolecules in the endothelial glycocalyx. Powerful methods are available to investigate these mechanisms at the levels of cultured endothelial monolayers, isolated microvessels, and the microvascular units within intact organs. ⋯ The second part of the review compares normal and increased permeability in individually perfused venular microvessels and endothelial cell monolayers. The heterogeneity of endothelial cell phenotypes in the baseline state and after exposure to injury and inflammatory conditions is emphasized. Lastly, we review new approaches to investigation of the glycocalyx barrier properties in cultured endothelial monolayers and in whole-body investigations.