Clinical epidemiology
-
Clinical epidemiology · Jan 2014
Empirical comparison of four baseline covariate adjustment methods in analysis of continuous outcomes in randomized controlled trials.
Although seemingly straightforward, the statistical comparison of a continuous variable in a randomized controlled trial that has both a pre- and posttreatment score presents an interesting challenge for trialists. We present here empirical application of four statistical methods (posttreatment scores with analysis of variance, analysis of covariance, change in scores, and percent change in scores), using data from a randomized controlled trial of postoperative pain in patients following total joint arthroplasty (the Morphine COnsumption in Joint Replacement Patients, With and Without GaBapentin Treatment, a RandomIzed ControlLEd Study [MOBILE] trials). ⋯ ANCOVA, through both simulation and empirical studies, provides the best statistical estimation for analyzing continuous outcomes requiring covariate adjustment. Our empirical findings support the use of ANCOVA as an optimal method in both design and analysis of trials with a continuous primary outcome.