Pediatric research
-
There is evidence that intrauterine growth restriction (IUGR) is associated with altered dopaminergic function in the immature brain. Compelling evidence exists that in the newborn brain, specific structures are especially vulnerable to O2 deprivation. The dopaminergic system is shown to be sensitive to O2 deprivation in the immature brain. ⋯ Furthermore, IUGR piglets maintained cerebral O2 uptake in the early period of H/H, but during the late period of H/H, a significantly reduced cerebral metabolic rate of O2 occurred (p <0.05). Thus, IUGR is accompanied by a missing activation of dopaminergic activity and attenuated brain oxidative metabolism during moderate H/H. This may indicate endogenous brain protection against O2 deprivation.
-
Moderate hypothermia is consistently neuroprotective after hypoxic-ischemic insults and is the subject of ongoing clinical trials. In pilot studies, we observed rebound seizure activity in one infant during rewarming from a 72-h period of hypothermia. We therefore quantified the development of EEG-defined seizures during rewarming in an experimental paradigm of delayed cooling for cerebral ischemia. ⋯ Individual seizures were typically short (28.8 +/- 5.8 s versus 29.0 +/- 6.8 s in sham cooled; NS), and of modest amplitude (35.9 +/- 2.8 versus 38.8 +/- 3.4 microV; NS). Neuronal loss in the parasagittal cortex was significantly reduced in the cooled group (51 +/- 9% versus 91 +/- 5%; p <0.002) and was not correlated with rebound epileptiform activity. In conclusion, rapid rewarming after a prolonged interval of therapeutic hypothermia can be associated with a transient increase in epileptiform events but does not seem to have significant adverse implications for neural outcome.