Pediatric research
-
The majority of infants born very preterm (24-32 wk gestational age) now survive; however, long-term neurodevelopmental and behavioral problems remain a concern. As part of their neonatal care, very preterm infants undergo repeated painful procedures during a period of rapid brain development and programming of stress systems. Infants born this early have the nociceptive circuitry required to perceive pain, however, their sensory systems are functionally immature. ⋯ Neonatal rat models have demonstrated that persistent or repeated pain increases apoptosis of neurons, and neonatal pain and stress lead to anxiety-like behaviors during adulthood. In humans, greater exposure to neonatal pain-related stress has been associated with altered brain microstructure and stress hormone levels, as well as with poorer cognitive, motor, and behavioral neurodevelopment in infants and children born very preterm. Therefore, it is important that pain-related stress in preterm neonates is accurately identified, appropriately managed, and that pain management strategies are evaluated for protective or adverse effects in the long term.
-
Observational Study
Effect of temperature on thromboelastography and implications for clinical use in newborns undergoing therapeutic hypothermia.
Encephalopathic neonates undergoing therapeutic hypothermia have increased risk for coagulopathy secondary to perinatal asphyxia and effects of cooling on the coagulation enzyme cascade. Thromboelastography (TEG) allows for a comprehensive assessment of coagulation that can be regulated for temperature. TEG has not been previously evaluated in newborns undergoing hypothermia treatment. ⋯ TEG results are affected by temperature, consistent with the known association of hypothermia with coagulopathy. Several TEG parameters are predictive of clinical bleeding in newborns undergoing hypothermia. Selected cutpoints to predict bleeding risk are temperature dependent.
-
White matter (WM) injury is common after cardiopulmonary bypass or deep hypothermic circulatory arrest in neonates who have cerebral immaturity secondary to in utero hypoxia. The mechanism remains unknown. We investigated effects of preoperative hypoxia on deep hypothermic circulatory arrest-induced WM injury using a combined experimental paradigm in rodents. ⋯ Developmental alterations due to hypoxia result in an increased WM susceptibility to injury. Promoting WM regeneration by oligodendrocyte progenitors after earlier surgery using deep hypothermia is the most promising approach for successful WM development in congenital heart disease patients.