Biochemical pharmacology
-
Biochemical pharmacology · Sep 1998
ReviewOpioid analgesics as noncompetitive N-methyl-D-aspartate (NMDA) antagonists.
Much evidence points to the involvement of N-methyl-D-aspartate (NMDA) receptors in the development and maintainance of neuropathic pain. In neuropathic pain, there is generally involved a presumed opioid-insensitive component, which apparently can be blocked by NMDA receptor antagonists. However, in order to obtain complete analgesia, a combination of an NMDA receptor antagonist and an opioid receptor agonist is needed. ⋯ Clinical anecdotes suggest that the NMDA receptor antagonism of these opioids may play a significant role in the pharmacological action of these compounds; however, no clinical studies have been conducted to support this issue. In the present commentary, we discuss evidence for the NMDA receptor antagonism of these compounds and its relevance for clinical pain treatment; an overview of structure-activity relationships for the relevant opioids as noncompetitive NMDA receptor antagonists also is given. It is concluded that although the finding that some opioids are weak noncompetitive NMDA receptor antagonists in vitro has created much attention among clinicians, no clinical studies have been conducted to evaluate the applicability of these compounds in the treatment of neuropathic pain conditions.
-
Biochemical pharmacology · Sep 1998
Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease.
In Parkinson's disease (PD), dopaminergic cell death in the substantia nigra was associated with a profound glutathione (GSH) decrease and a mitochondrial dysfunction. The fall in GSH concentration seemed to appear before the mitochondrial impairment and the cellular death, suggesting that a link may exist between these events. The relationships between GSH depletion, reactive oxygen species (ROS) production, mitochondrial dysfunction and the mode of cell death in neuronal cells remain to be resolved and will provide important insights into the etiology of Parkinson's disease. ⋯ These results showed the crucial role of GSH for maintaining the integrity of mitochondrial function in neuronal cells. Oxidative stress and mitochondrial impairment, preceding DNA fragmentation, could be early events in the apoptotic process induced by GSH depletion. Our data are consistent with the hypothesis that GSH depletion could contribute to neuronal apoptosis in Parkinson's disease through oxidative stress and mitochondrial dysfunction.