Biochemical pharmacology
-
Biochemical pharmacology · Dec 2000
Lack of glutathione conjugation to adriamycin in human breast cancer MCF-7/DOX cells. Inhibition of glutathione S-transferase p1-1 by glutathione conjugates from anthracyclines.
One of the proposed mechanisms for multidrug resistance relies on the ability of resistant tumor cells to efficiently promote glutathione S-transferase (GST)-catalyzed GSH conjugation of the antitumor drug. This type of conjugation, observed in several families of drugs, has never been documented satisfactorily for anthracyclines. Adriamycin-resistant human breast cancer MCF-7/DOX cells, presenting a comparable GSH concentration, but a 14-fold increase of the GST P1-1 activity relative to the sensitive MCF-7 cells, have been treated with adriamycin in the presence of verapamil, an inhibitor of the 170 P-glycoprotein (P-gp) drug transport protein, and scrutinized for any production of GSH-adriamycin conjugates. ⋯ These findings rule out GSH conjugation or any other significant biochemical transformation as the basis for resistance to adriamycin and as a ground for the anomalous localization of the drug in the cell. Adriamycin, daunomycin, and menogaril did not undergo meaningful conjugation to GSH in the presence of GST P1-1 at pH 7.2. Indeed, their synthetic C(7)-aglycon-GSH conjugates exerted a strong inhibitory effect on GST P1-1, with K(i) at 25 degrees in the 1-2 microM range, scarcely dependent on their stereochemistry at C(7).