Biochemical pharmacology
-
Biochemical pharmacology · Sep 2004
ReviewAn evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis.
Strong evidence emphasizes the role of the insulin-like growth factor (IGF) system and of type-I IGF receptor (IGF-IR) signalling in tumourigenesis. In this connection: (i) changes in the expression pattern of components of the IGF system (autocrine/paracrine expression of IGF-I and -II, overexpression of IGF-IR, decreased expression of IGF-binding proteins (IGFBPs) and of type-II IGF receptor/cation-independent mannose-6-phosphate receptor (IGF-II/M6PR) and (ii) increased serum concentrations of proteases that cleave the IGFBPs (e.g., cathepsin D) were observed in patients with hepatocellular carcinomas (HCC), in human hepatoma cell lines and in their conditioned culture medium, as well as in rodent models of hepatocarcinogenesis. ⋯ This review addresses the putative roles of the IGF system in primary HCC, with a special focus on the underlying molecular mechanisms. In a second part it emphasizes the putative interference of IGF-IR signalling with chemotherapeutic drug-induced apoptosis in human hepatoma cells.
-
Biochemical pharmacology · Sep 2004
Molecular mechanisms of deguelin-induced apoptosis in transformed human bronchial epithelial cells.
Increasing evidence has demonstrated that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway plays an important role in cell proliferation, apoptosis, angiogenesis, adhesion, invasion, and migration, functions that are critical to cancer cell survival and metastasis. Increased expression of activated Akt has been observed in the early stages of tobacco-induced lung carcinogenesis. Moreover, blocking the PI3K/Akt pathway specifically inhibits the proliferation of non-small cell lung cancer (NSCLC) cells, indicating that the PI3K/Akt pathway is a potential target for chemoprevention and therapy in lung cancer. ⋯ We found that genetic or pharmacologic approaches targeting the PI3K/Akt pathway inhibited the proliferation of premalignant and malignant human bronchial epithelial (HBE) cells. After screening several natural products to identify a potential lung cancer chemopreventive agent, we have found that deguelin, a rotenoid isolated from Mundulea sericea (Leguminosae), specifically inhibits the growth of transformed HBE and NSCLC cells by inducing cell-cycle arrest in the G2/M phase and apoptosis, with no detectable toxic effects on normal HBE cells, most likely due to the agent's ability to inhibit PI3K/Akt-mediated signaling pathways. The specific sensitivity of premalignant and malignant HBE and NSCLC cells to deguelin suggests that this drug could be clinically useful for chemoprevention in early-stage lung carcinogenesis and for therapy in confirmed lung cancer.