Biochemical pharmacology
-
Biochemical pharmacology · Apr 2006
Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down-regulation of NF-kappaB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells.
Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. Rengyolone, a cyclohexylethanoid isolated from the fruits of Forsythia koreana, exhibits anti-inflammatory activity with unknown mechanism. In this study, we found that rengyolone has a strong inhibitory effect on the production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha). ⋯ The LPS-induced DNA binding activity of NF-kappaB was significantly inhibited by rengyolone, and this effect was mediated through inhibition of the degradation of inhibitory factor-kappaBalpha and phosphorylation of p38 MAP kinase. Furthermore, rengyolone suppressed the expression of ICE protein in IL-1beta-treated D10S cells. Taken together, these results suggest that rengyolone attenuates the inflammation through inhibition of NO production and iNOS expression by blockade of NF-kappaB and p38 MAPK activation in LPS-stimulated RAW 264.7 cells.