Biochemical pharmacology
-
Biochemical pharmacology · Aug 2018
Probing the binding site of novel selective positive allosteric modulators at the M1 muscarinic acetylcholine receptor.
Subtype-selective allosteric modulation of the M1 muscarinic acetylcholine (ACh) receptor (M1 mAChR) is an attractive approach for the treatment of numerous disorders, including cognitive deficits. The discovery of benzyl quinolone carboxylic acid, BQCA, a selective M1 mAChR positive allosteric modulator (PAM), spurred the subsequent development of newer generation M1 PAMs representing diverse chemical scaffolds, different pharmacodynamic properties and, in some instances, improved pharmacokinetics. Key exemplar molecules from such efforts include PF-06767832 (N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-5-methyl-4-(4-(thiazol-4-yl)benzyl)pyridine-2-carboxamide), VU6004256 (4,6-difluoro-N-(1S,2S)-2-hydroxycyclohexyl-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide) and MIPS1780 (3-(2-hydroxycyclohexyl)-6-(2-((4-(1-methyl-1H-pyrazol-4-yl)-benzyl)oxy)phenyl)pyrimidin-4(3H)-one). ⋯ Key residues involved in the activity of BQCA, including Y179 in the second extracellular loop (ECL) and W4007.35 in transmembrane domain (TM) 7, were critical for the activity of all PAMs tested. Overall, our data indicate that structurally distinct PAMs share a similar binding site with BQCA, specifically, an extracellular allosteric site defined by residues in TM2, TM7 and ECL2. These findings provide valuable insights into the structural basis underlying modulator binding, cooperativity and signaling at the M1 mAChR, which is essential for the rational design of PAMs with tailored pharmacological properties.
-
Transmembrane AMPA receptor regulatory proteins (TARPs) govern AMPA receptor cell surface expression and distinct physiological properties including agonist affinity, desensitization and deactivation kinetics. The prototypical TARP, STG or γ2 and TARPs γ3, γ4, γ7 and γ8 are all expressed to varying degrees in the mammalian brain and differentially regulate AMPAR gating parameters. Positive allosteric AMPA receptor modulators or ampakines alter receptor rates of agonist binding/unbinding, channel opening and can offset receptor desensitization and deactivation. ⋯ However, γ8 gave the most significant increases in affinities of CX614 and CTZ on GluR2-flop. These data show that TARPs differentially affect the surface expression and kinetics of the AMPA receptor, as well as the pharmacology of ampakines for the AMPA receptor. The modulatory effects of TARPs on ampakine pharmacology are complex, being dependent on both the TARP subtype and the AMPA receptor subtypes/isoforms.