Biochemical pharmacology
-
Patients with severe asthma that remain uncontrolled incur significant medical burden and healthcare costs. Severe asthma is a heterogeneous airway disorder with complex pathophysiological mechanisms which can be broadly divided into type 2 (T2)-high and T2-low inflammatory pathways. Recent advances in asthma therapeutics with the advent of biologics have heralded an era of promising targeted therapy in this group of patients. ⋯ IL-17A, thymic stromal lymphopoietin (TSLP), IL-25, IL-33, IL-32 and IL-36γ) with potential of modifying and reducing the severity of asthma. This commentary provides an overview of treatment with the current biologics and highlights the limitations, challenges and unmet needs in clinical management. We also summarise up-and-coming potential targets and therapeutic biologics for severe asthma.
-
Asthma is a chronic inflammatory disease of the airways affecting more than 300 million patients worldwide. The disease can be of various severity ranging from very mild to severe. The severe form of the disease only affects about 5% of patients but is responsible for a large component of the overall disease burden and results in about half of direct asthma-related costs. ⋯ When biologics are not an option, thermoplasty and macrolides have also become available. Despite many recent breakthroughs in severe asthma, much research needs to be done. Improvement in availability of targeted asthma medications and asthma prevention should be top priorities.
-
Biochemical pharmacology · Sep 2020
ReviewChildhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack.
Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity. Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. ⋯ We then discuss our understanding of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial progress in the management of severe childhood asthma.