The Journal of laboratory and clinical medicine
-
We investigated the pathogenic mechanism(s) of small intestinal injury during acidosis in relation to circulating nitric oxide (NO) in an experimental rat model. Rats were anesthetized, paralyzed, and mechanically ventilated with room air. Hydrochloric acid (0.16 mmol bolus followed by 0.132 mmol/kg/h) was infused through the jugular vein for 5 hours. ⋯ Pretreatment with an iNOS inhibitor, aminoguanidine (AG, 50 mg/kg), reversed HCl-induced hypotension without a change in blood pH. HCl-induced lesions, MPO activity, TBARS, and plasma NOx production were decreased by AG. Our data show that the pathogenic mechanisms of acidosis-induced small intestinal lesions involve up-regulation of NO production by increased expression of iNOS and augmentation of superoxide radicals and MPO activity.
-
The present study was intended to examine whether the amphotericin-induced urinary concentration defect can be related to an altered regulation of aquaporin (AQP) water channels in the kidney. Male Sprague-Dawley rats were injected with amphotericin B (6 mg/kg/d, IP ) for 21 days. The protein expression of AQP1-3, Gsalpha, and adenylyl cyclase was determined in the kidney. ⋯ The expression of Gsalpha proteins was decreased in the inner medulla, whereas that of adenylyl cyclase VI remained unaltered. These findings indicate that the amphotericin-induced urinary concentration defect may in part be causally related to a reduced abundance of AQP2 channels in the kidney. It is also suggested that the primary impairment in the pathway leading to the activation of AQP channels that are regulated by the AVP/cAMP pathway lies at the level of G proteins.