Hematology
-
The acute or inducible hepatic porphyrias comprise four inherited disorders of heme biosynthesis. They usually remain asymptomatic for most of the lifespan of individuals who inherit the specific enzyme deficiencies but may cause life-threatening attacks of neurovisceral symptoms. Failure to consider the diagnosis frequently delays effective treatment, and inappropriate diagnostic tests and/or mistaken interpretation of results may lead to misdiagnosis and inappropriate treatment. ⋯ Critical to the rapid diagnosis of the three most common of these disorders is demonstration of markedly increased urinary porphobilinogen (PBG) in a single-void urine specimen. The treatment of choice for all but mild attacks of the acute porphyrias is intravenous hemin therapy, which should be started as soon as possible. Intravenous glucose alone is recommended only for mild attacks (no weakness or hyponatremia) or until hemin is available.
-
The hereditary periodic fevers are a group of Mendelian disorders characterized by seemingly unprovoked fever and localized inflammation. Recent data indicate that these illnesses represent inborn errors in the regulation of innate immunity. Pyrin, the protein mutated in familial Mediterranean fever, defines an N-terminal domain found in a large family of proteins involved in inflammation and apoptosis. ⋯ Somewhat unexpectedly, mutations in the 55 kDa receptor for tumor necrosis factor also give rise to a dominantly inherited periodic fever syndrome, rather than immunodeficiency, a finding that has stimulated important investigations into both pathogenesis and treatment. Finally, the discovery of the genetic basis of the hyperimmunoglobulinemia D with periodic fever syndrome suggests an as yet incompletely understood connection between the mevalonate pathway and the regulation of cytokine production. These insights extend our understanding of the regulation of innate immunity in man, while providing the conceptual basis for the rational design of targeted therapies, both for the hereditary periodic fevers themselves and other inflammatory disorders as well.
-
The treatment of chronic myeloid leukemia (CML) has been revolutionized by the small molecule BCR-ABL-selective kinase inhibitor imatinib. Although imatinib is highly effective initially and generally well-tolerated, relapse is increasingly encountered clinically. Until recently, for the majority of CML patients with disease no longer responsive to imatinib, as well as for patients with imatinib intolerance, few effective therapeutic options existed. ⋯ Notably, neither of these compounds is effective against the imatinib-resistant BCR-ABL/T315I mutation. The potential availability of highly effective medications for the treatment of imatinib-resistant and intolerant cases of CML is expected to further complicate the timing of other effective therapies, such as allogeneic stem cell transplantation. Additionally, periodic genotyping of the BCR-ABL kinase domain to screen for drug-resistant mutations may play an increasingly important role in the future management of CML cases.
-
Gene transfer for beta-thalassemia requires gene transfer into hematopoietic stem cells using integrating vectors that direct regulated expression of beta globin at therapeutic levels. Among integrating vectors, oncoretroviral vectors carrying the human beta-globin gene and portions of the locus control region (LCR) have suffered from problems of vector instability, low titers and variable expression. In recent studies, human immunodeficiency virus-based lentiviral (LV) vectors were shown to stably transmit the human beta-globin gene and a large LCR element, resulting in correction of beta-thalassemia intermedia in mice. ⋯ In summary, LV vectors have paved the way for clinical gene therapy trials for Cooley's anemia and other beta-globin disorders. SIN-LV vectors address several safety concerns of randomly integrating viral vectors by removing viral transcriptional elements and providing lineage-restricted expression. Flanking the proviral cassette with chromatin insulator elements, which additionally have enhancer-blocking properties, may further improve SIN-LV vector safety.